Rescaled contact processes converge to super-Brownian motion in two or more dimensions

被引:0
|
作者
Richard Durrett
Edwin A. Perkins
机构
[1] Department of Mathematics and ORIE,
[2] 278 Rhodes Hall,undefined
[3] Cornell University,undefined
[4] Ithaca,undefined
[5] NY 14853,undefined
[6] USA (e-mail: rtd1@cornell.edu),undefined
[7] Department of Mathematics,undefined
[8] 1984 Mathematics Rd.,undefined
[9] University of British Columbia,undefined
[10] Vancouver,undefined
[11] B.C. V6T 1Z2,undefined
[12] Canada (e-mail: perkins@math.ubc.ca),undefined
来源
关键词
Mathematics Subject Classification (1991): Primary 60K35, 60G57; Secondary: 60F05, 60J80;
D O I
暂无
中图分类号
学科分类号
摘要
We show that in dimensions two or more a sequence of long range contact processes suitably rescaled in space and time converges to a super-Brownian motion with drift. As a consequence of this result we can improve the results of Bramson, Durrett, and Swindle (1989) by replacing their order of magnitude estimates of how close the critical value is to 1 with sharp asymptotics.
引用
收藏
页码:309 / 399
页数:90
相关论文
共 50 条
  • [21] Functional Central Limit Theorem for the Super-Brownian Motion with Super-Brownian Immigration
    Mei Zhang
    Journal of Theoretical Probability, 2005, 18 : 665 - 685
  • [22] Pathwise convergence of a rescaled super-Brownian catalyst reactant process
    Fleischmann, Klaus
    Klenke, Achim
    Xiong, Jie
    JOURNAL OF THEORETICAL PROBABILITY, 2006, 19 (03) : 557 - 588
  • [23] Pathwise Convergence of a Rescaled Super-Brownian Catalyst Reactant Process
    Klaus Fleischmann
    Achim Klenke
    Jie Xiong
    Journal of Theoretical Probability, 2006, 19 : 557 - 588
  • [24] A cyclically catalytic super-Brownian motion
    Fleischmann, K
    Xiong, J
    ANNALS OF PROBABILITY, 2001, 29 (02): : 820 - 861
  • [25] On the occupation measure of super-Brownian motion
    Le Gall, Jean-Francois
    Merle, Mathieu
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2006, 11 : 252 - 265
  • [26] Thick points of super-Brownian motion
    Blath, J
    Mörters, P
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 131 (04) : 604 - 630
  • [27] The extremal process of super-Brownian motion
    Ren, Yan-Xia
    Song, Renming
    Zhang, Rui
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 137 : 1 - 34
  • [28] Killed rough super-Brownian motion
    Rosati, Tommaso Cornelis
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 12
  • [29] The dimension of the boundary of super-Brownian motion
    Leonid Mytnik
    Edwin Perkins
    Probability Theory and Related Fields, 2019, 174 : 821 - 885
  • [30] ON THE BOUNDARY OF THE SUPPORT OF SUPER-BROWNIAN MOTION
    Mueller, Carl
    Mytnik, Leonid
    Perkins, Edwin
    ANNALS OF PROBABILITY, 2017, 45 (6A): : 3481 - 3534