Rescaled contact processes converge to super-Brownian motion in two or more dimensions

被引:0
|
作者
Richard Durrett
Edwin A. Perkins
机构
[1] Department of Mathematics and ORIE,
[2] 278 Rhodes Hall,undefined
[3] Cornell University,undefined
[4] Ithaca,undefined
[5] NY 14853,undefined
[6] USA (e-mail: rtd1@cornell.edu),undefined
[7] Department of Mathematics,undefined
[8] 1984 Mathematics Rd.,undefined
[9] University of British Columbia,undefined
[10] Vancouver,undefined
[11] B.C. V6T 1Z2,undefined
[12] Canada (e-mail: perkins@math.ubc.ca),undefined
来源
关键词
Mathematics Subject Classification (1991): Primary 60K35, 60G57; Secondary: 60F05, 60J80;
D O I
暂无
中图分类号
学科分类号
摘要
We show that in dimensions two or more a sequence of long range contact processes suitably rescaled in space and time converges to a super-Brownian motion with drift. As a consequence of this result we can improve the results of Bramson, Durrett, and Swindle (1989) by replacing their order of magnitude estimates of how close the critical value is to 1 with sharp asymptotics.
引用
收藏
页码:309 / 399
页数:90
相关论文
共 50 条
  • [31] Lattice trees and super-Brownian motion
    Derbez, E
    Slade, G
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (01): : 19 - 38
  • [32] The dimension of the boundary of super-Brownian motion
    Mytnik, Leonid
    Perkins, Edwin
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (3-4) : 821 - 885
  • [33] The multifractal structure of super-Brownian motion
    Perkins, EA
    Taylor, SJ
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1998, 34 (01): : 97 - 138
  • [34] The average density of super-Brownian motion
    Mörters, P
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (01): : 71 - 100
  • [35] On the martingale problem for super-Brownian motion
    Bass, RF
    Perkins, EA
    SEMINAIRE DE PROBABILITES XXXV, 2001, 1755 : 195 - 201
  • [36] The biodiversity of catalytic super-Brownian motion
    Fleischmann, K
    Klenke, A
    ANNALS OF APPLIED PROBABILITY, 2000, 10 (04): : 1121 - 1136
  • [37] Thick points of super-Brownian motion
    Jochen Blath
    Peter Mörters
    Probability Theory and Related Fields, 2005, 131 : 604 - 630
  • [38] Occupation time large deviations for critical, branching Brownian motion, super-Brownian motion and related processes
    Deuschel, JD
    Rosen, J
    ANNALS OF PROBABILITY, 1998, 26 (02): : 602 - 643
  • [39] Kolmogorov's test for super-Brownian motion
    Dhersin, JS
    Le Gall, JF
    ANNALS OF PROBABILITY, 1998, 26 (03): : 1041 - 1056
  • [40] Moderate deviation for super-Brownian motion with immigration
    Mei Zhang
    Science in China Series A: Mathematics, 2004, 47 : 440 - 452