An adaptive trust-region method without function evaluations

被引:0
|
作者
Geovani N. Grapiglia
Gabriel F. D. Stella
机构
[1] Université catholique de Louvain,Programa de Pós
[2] ICTEAM/INMA,Graduação em Matemática, Centro Politécnico
[3] Universidade Federal do Paraná,undefined
关键词
Unconstrained optimization; Trust-region method; Global convergence; Worst-case complexity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we propose an adaptive trust-region method for smooth unconstrained optimization. The update rule for the trust-region radius relies only on gradient evaluations. Assuming that the gradient of the objective function is Lipschitz continuous, we establish worst-case complexity bounds for the number of gradient evaluations required by the proposed method to generate approximate stationary points. As a corollary, we establish a global convergence result. We also present numerical results on benchmark problems. In terms of the number of calls of the oracle, the proposed method compares favorably with trust-region methods that use evaluations of the objective function.
引用
收藏
页码:31 / 60
页数:29
相关论文
共 50 条
  • [1] An adaptive trust-region method without function evaluations
    Grapiglia, Geovani N.
    Stella, Gabriel F. D.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 82 (01) : 31 - 60
  • [2] A consistently adaptive trust-region method
    Hamad, Fadi
    Hinder, Oliver
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [3] A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations
    Robert J. Baraldi
    Drew P. Kouri
    [J]. Mathematical Programming, 2023, 201 : 559 - 598
  • [4] A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations
    Baraldi, Robert J. J.
    Kouri, Drew P. P.
    [J]. MATHEMATICAL PROGRAMMING, 2023, 201 (1-2) : 559 - 598
  • [5] Adaptive Trust-Region Method on Riemannian Manifold
    Shimin Zhao
    Tao Yan
    Kai Wang
    Yuanguo Zhu
    [J]. Journal of Scientific Computing, 2023, 96
  • [6] Adaptive Trust-Region Method on Riemannian Manifold
    Zhao, Shimin
    Yan, Tao
    Wang, Kai
    Zhu, Yuanguo
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [7] Nonmonotone Adaptive Trust-region Method for Nonlinear Equations
    Yuan, Dongjin
    Zhao, Haiyan
    Wang, Fu
    [J]. DCABES 2008 PROCEEDINGS, VOLS I AND II, 2008, : 150 - 153
  • [8] Impulse noise removal by an adaptive trust-region method
    Kimiaei, Morteza
    Rahpeymaii, Farzad
    [J]. SOFT COMPUTING, 2019, 23 (22) : 11901 - 11923
  • [9] Impulse noise removal by an adaptive trust-region method
    Morteza Kimiaei
    Farzad Rahpeymaii
    [J]. Soft Computing, 2019, 23 : 11901 - 11923
  • [10] An adaptive conic trust-region method for unconstrained optimization
    Han, QM
    Sun, WY
    Han, JY
    Sampaio, RJB
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (06): : 665 - 677