A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations

被引:0
|
作者
Robert J. Baraldi
Drew P. Kouri
机构
[1] Sandia National Laboratories,
来源
Mathematical Programming | 2023年 / 201卷
关键词
Nonconvex optimization; Nonsmooth optimization; Nonlinear programming; Trust regions; Large-scale optimization; Newton’s method; 49M15; 49M37; 65K05; 65K10; 90C06; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
Many applications require minimizing the sum of smooth and nonsmooth functions. For example, basis pursuit denoising problems in data science require minimizing a measure of data misfit plus an ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^1$$\end{document}-regularizer. Similar problems arise in the optimal control of partial differential equations (PDEs) when sparsity of the control is desired. We develop a novel trust-region method to minimize the sum of a smooth nonconvex function and a nonsmooth convex function. Our method is unique in that it permits and systematically controls the use of inexact objective function and derivative evaluations. When using a quadratic Taylor model for the trust-region subproblem, our algorithm is an inexact, matrix-free proximal Newton-type method that permits indefinite Hessians. We prove global convergence of our method in Hilbert space and demonstrate its efficacy on three examples from data science and PDE-constrained optimization.
引用
收藏
页码:559 / 598
页数:39
相关论文
共 50 条
  • [1] A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations
    Baraldi, Robert J. J.
    Kouri, Drew P. P.
    [J]. MATHEMATICAL PROGRAMMING, 2023, 201 (1-2) : 559 - 598
  • [2] Local convergence analysis of an inexact trust-region method for nonsmooth optimization
    Robert J. Baraldi
    Drew P. Kouri
    [J]. Optimization Letters, 2024, 18 : 663 - 680
  • [3] Local convergence analysis of an inexact trust-region method for nonsmooth optimization
    Baraldi, Robert J.
    Kouri, Drew P.
    [J]. OPTIMIZATION LETTERS, 2024, 18 (03) : 663 - 680
  • [4] A TRUST-REGION METHOD FOR NONSMOOTH NONCONVEX OPTIMIZATION
    Chen, Ziang
    Milzarek, Andre
    Wen, Zaiwen
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (04) : 683 - 716
  • [5] A PROXIMAL QUASI-NEWTON TRUST-REGION METHOD FOR NONSMOOTH REGULARIZED OPTIMIZATION
    Aravkin, Aleksandr Y.
    Baraldi, Robert
    Orban, Dominique
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 900 - 929
  • [6] INEXACT OBJECTIVE FUNCTION EVALUATIONS IN A TRUST-REGION ALGORITHM FOR PDE-CONSTRAINED OPTIMIZATION UNDER UNCERTAINTY
    Kouri, D. P.
    Heinkenschloss, M.
    Ridzal, D.
    Waanders, B. G. Van Bloemen
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06): : A3011 - A3029
  • [7] An adaptive trust-region method without function evaluations
    Geovani N. Grapiglia
    Gabriel F. D. Stella
    [J]. Computational Optimization and Applications, 2022, 82 : 31 - 60
  • [8] An adaptive trust-region method without function evaluations
    Grapiglia, Geovani N.
    Stella, Gabriel F. D.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 82 (01) : 31 - 60
  • [9] On an inexact trust-region SQP-filter method for constrained nonlinear optimization
    Andrea Walther
    Lorenz Biegler
    [J]. Computational Optimization and Applications, 2016, 63 : 613 - 638
  • [10] On an inexact trust-region SQP-filter method for constrained nonlinear optimization
    Walther, Andrea
    Biegler, Lorenz
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (03) : 613 - 638