A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations

被引:0
|
作者
Robert J. Baraldi
Drew P. Kouri
机构
[1] Sandia National Laboratories,
来源
Mathematical Programming | 2023年 / 201卷
关键词
Nonconvex optimization; Nonsmooth optimization; Nonlinear programming; Trust regions; Large-scale optimization; Newton’s method; 49M15; 49M37; 65K05; 65K10; 90C06; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
Many applications require minimizing the sum of smooth and nonsmooth functions. For example, basis pursuit denoising problems in data science require minimizing a measure of data misfit plus an ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^1$$\end{document}-regularizer. Similar problems arise in the optimal control of partial differential equations (PDEs) when sparsity of the control is desired. We develop a novel trust-region method to minimize the sum of a smooth nonconvex function and a nonsmooth convex function. Our method is unique in that it permits and systematically controls the use of inexact objective function and derivative evaluations. When using a quadratic Taylor model for the trust-region subproblem, our algorithm is an inexact, matrix-free proximal Newton-type method that permits indefinite Hessians. We prove global convergence of our method in Hilbert space and demonstrate its efficacy on three examples from data science and PDE-constrained optimization.
引用
收藏
页码:559 / 598
页数:39
相关论文
共 50 条
  • [41] An efficient nonmonotone trust-region method for unconstrained optimization
    Masoud Ahookhosh
    Keyvan Amini
    [J]. Numerical Algorithms, 2012, 59 : 523 - 540
  • [42] An adaptive conic trust-region method for unconstrained optimization
    Han, QM
    Sun, WY
    Han, JY
    Sampaio, RJB
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (06): : 665 - 677
  • [43] A Conic Trust-Region Method for Nonlinearly Constrained Optimization
    Wenyu Sun
    Ya-xiang Yuan
    [J]. Annals of Operations Research, 2001, 103 : 175 - 191
  • [44] An efficient nonmonotone trust-region method for unconstrained optimization
    Ahookhosh, Masoud
    Amini, Keyvan
    [J]. NUMERICAL ALGORITHMS, 2012, 59 (04) : 523 - 540
  • [45] An Improved Adaptive Trust-Region Method for Unconstrained Optimization
    Esmaeili, Hamid
    Kimiaei, Morteza
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2014, 19 (04) : 469 - 490
  • [46] A conic trust-region method for nonlinearly constrained optimization
    Sun, WY
    Yuan, YX
    [J]. ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 175 - 191
  • [47] Distributed and Inexact Proximal Gradient Method for Online Convex Optimization
    Bastianello, Nicola
    Dall'Anese, Emiliano
    [J]. 2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2432 - 2437
  • [48] Inexact proximal stochastic gradient method for convex composite optimization
    Xiao Wang
    Shuxiong Wang
    Hongchao Zhang
    [J]. Computational Optimization and Applications, 2017, 68 : 579 - 618
  • [49] Inexact proximal stochastic gradient method for convex composite optimization
    Wang, Xiao
    Wang, Shuxiong
    Zhang, Hongchao
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 68 (03) : 579 - 618
  • [50] A new trust region method for nonsmooth nonconvex optimization
    Hoseini, N.
    Nobakhtian, S.
    [J]. OPTIMIZATION, 2018, 67 (08) : 1265 - 1286