A proximal trust-region method for nonsmooth optimization with inexact function and gradient evaluations

被引:0
|
作者
Robert J. Baraldi
Drew P. Kouri
机构
[1] Sandia National Laboratories,
来源
Mathematical Programming | 2023年 / 201卷
关键词
Nonconvex optimization; Nonsmooth optimization; Nonlinear programming; Trust regions; Large-scale optimization; Newton’s method; 49M15; 49M37; 65K05; 65K10; 90C06; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
Many applications require minimizing the sum of smooth and nonsmooth functions. For example, basis pursuit denoising problems in data science require minimizing a measure of data misfit plus an ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^1$$\end{document}-regularizer. Similar problems arise in the optimal control of partial differential equations (PDEs) when sparsity of the control is desired. We develop a novel trust-region method to minimize the sum of a smooth nonconvex function and a nonsmooth convex function. Our method is unique in that it permits and systematically controls the use of inexact objective function and derivative evaluations. When using a quadratic Taylor model for the trust-region subproblem, our algorithm is an inexact, matrix-free proximal Newton-type method that permits indefinite Hessians. We prove global convergence of our method in Hilbert space and demonstrate its efficacy on three examples from data science and PDE-constrained optimization.
引用
收藏
页码:559 / 598
页数:39
相关论文
共 50 条
  • [31] A NONSMOOTH TRUST-REGION METHOD FOR LOCALLY LIPSCHITZ FUNCTIONS WITH APPLICATION TO OPTIMIZATION PROBLEMS CONSTRAINED BY VARIATIONAL INEQUALITIES
    Christof, Constantin
    Carlos De los Reyes, Juan
    Meyer, Christian
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (03) : 2163 - 2196
  • [32] TRFD: A derivative-free trust-region method based on finite differences for composite nonsmooth optimization
    Department of Mathematical Engineering, ICTEAM Institute, Université Catholique de Louvain, Louvain-la-Neuve
    B-1348, Belgium
    [J]. arXiv,
  • [33] New proximal bundle algorithm based on the gradient sampling method for nonsmooth nonconvex optimization with exact and inexact information
    N. Hoseini Monjezi
    S. Nobakhtian
    [J]. Numerical Algorithms, 2023, 94 : 765 - 787
  • [34] New proximal bundle algorithm based on the gradient sampling method for nonsmooth nonconvex optimization with exact and inexact information
    Monjezi, N. Hoseini
    Nobakhtian, S.
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (02) : 765 - 787
  • [35] Numerical experiments with an inexact Jacobian trust-region algorithm
    Walther, Andrea
    Biegler, Lorenz T.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (02) : 255 - 271
  • [36] Numerical experiments with an inexact Jacobian trust-region algorithm
    Andrea Walther
    Lorenz T. Biegler
    [J]. Computational Optimization and Applications, 2011, 48 : 255 - 271
  • [37] A new inexact gradient descent method with applications to nonsmooth convex optimization
    Khanh, Pham Duy
    Mordukhovich, Boris S.
    Tran, Dat Ba
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2024,
  • [38] A New Inexact Gradient Descent Method with Applications to Nonsmooth Convex Optimization
    Khanh, Pham Duy
    Mordukhovich, Boris S.
    Tran, Dat Ba
    [J]. arXiv, 2023,
  • [39] PANTR: A Proximal Algorithm With Trust-Region Updates for Nonconvex Constrained Optimization
    Bodard, Alexander
    Pas, Pieter
    Patrinos, Panagiotis
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2389 - 2394
  • [40] A trust-region method with a conic model for unconstrained optimization
    Qu, Shao-Jian
    Jiang, Su-Da
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (15) : 1780 - 1808