An adaptive trust-region method without function evaluations

被引:0
|
作者
Geovani N. Grapiglia
Gabriel F. D. Stella
机构
[1] Université catholique de Louvain,Programa de Pós
[2] ICTEAM/INMA,Graduação em Matemática, Centro Politécnico
[3] Universidade Federal do Paraná,undefined
关键词
Unconstrained optimization; Trust-region method; Global convergence; Worst-case complexity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we propose an adaptive trust-region method for smooth unconstrained optimization. The update rule for the trust-region radius relies only on gradient evaluations. Assuming that the gradient of the objective function is Lipschitz continuous, we establish worst-case complexity bounds for the number of gradient evaluations required by the proposed method to generate approximate stationary points. As a corollary, we establish a global convergence result. We also present numerical results on benchmark problems. In terms of the number of calls of the oracle, the proposed method compares favorably with trust-region methods that use evaluations of the objective function.
引用
收藏
页码:31 / 60
页数:29
相关论文
共 50 条
  • [21] An adaptive approach of conic trust-region method for unconstrained optimization problems
    Fu J.
    Sun W.
    De Sampaio R.J.B.
    [J]. Journal of Applied Mathematics and Computing, 2005, 19 (1-2) : 165 - 177
  • [22] A trust-region method with improved adaptive radius for systems of nonlinear equations
    Hamid Esmaeili
    Morteza Kimiaei
    [J]. Mathematical Methods of Operations Research, 2016, 83 : 109 - 125
  • [23] An adaptive nonmonotone trust-region method with curvilinear search for minimax problem
    Wang, Fu-Sheng
    Wang, Chuan-Long
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8033 - 8041
  • [24] A trust-region method with improved adaptive radius for systems of nonlinear equations
    Esmaeili, Hamid
    Kimiaei, Morteza
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2016, 83 (01) : 109 - 125
  • [25] Adaptive trust-region algorithms for unconstrained optimization
    Rezapour, Mostafa
    Asaki, Thomas J.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2021, 36 (05): : 1059 - 1081
  • [26] ON THE GENERALIZED LANCZOS TRUST-REGION METHOD
    Zhang, Lei-Hong
    Shen, Chungen
    Li, Ren-Cang
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (03) : 2110 - 2142
  • [27] Trust-Region Adaptive Frequency for Online Continual Learning
    Yajing Kong
    Liu Liu
    Maoying Qiao
    Zhen Wang
    Dacheng Tao
    [J]. International Journal of Computer Vision, 2023, 131 : 1825 - 1839
  • [28] Outer Trust-Region Method for Constrained Optimization
    Ernesto G. Birgin
    Emerson V. Castelani
    André L. M. Martinez
    J. M. Martínez
    [J]. Journal of Optimization Theory and Applications, 2011, 150
  • [29] An implicit trust-region method on Riemannian manifolds
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 665 - 689
  • [30] A BFGS trust-region method for nonlinear equations
    Yuan, Gonglin
    Wei, Zengxin
    Lu, Xiwen
    [J]. COMPUTING, 2011, 92 (04) : 317 - 333