Adaptive Trust-Region Method on Riemannian Manifold

被引:2
|
作者
Zhao, Shimin [1 ]
Yan, Tao [1 ]
Wang, Kai [1 ]
Zhu, Yuanguo [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemannian optimization; Riemannian trust-region method; Truncated three-term conjugate gradient; Lipschitz condition with regard to vector transport; Stiefel manifold; CONJUGATE-GRADIENT METHOD; CONVERGENCE RATE; ALGORITHM;
D O I
10.1007/s10915-023-02288-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an adaptive trust-region method for Riemannian optimization problems. Especially, the trust-region radius converges to zero with the adaptive technique, and the trust-region subproblem is solved by the truncated three-term conjugate gradient method with new restart strategies. We present some properties of this Riemannian method and establish the global convergence and local superlinear convergence under some mild assumptions. Numerical results for the Rayleigh quotient minimization problem, Principal Component Analysis problem, and joint diagonalization problem are reported to demonstrate the effectiveness of the proposed Riemannian method.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Adaptive Trust-Region Method on Riemannian Manifold
    Shimin Zhao
    Tao Yan
    Kai Wang
    Yuanguo Zhu
    [J]. Journal of Scientific Computing, 2023, 96
  • [2] An implicit trust-region method on Riemannian manifolds
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 665 - 689
  • [3] A consistently adaptive trust-region method
    Hamad, Fadi
    Hinder, Oliver
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [4] Haplotype assembly using Riemannian trust-region method
    Mohades, M. M.
    Kahaei, M. H.
    Mohades, H.
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 112
  • [5] RIEMANNIAN TRUST-REGION METHOD FOR THE MAXIMAL CORRELATION PROBLEM
    Zhang, Lei-Hong
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (03) : 338 - 362
  • [6] Trust-region methods on Riemannian manifolds
    Absil, P-A.
    Baker, C. G.
    Gallivan, K. A.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2007, 7 (03) : 303 - 330
  • [7] Trust-Region Methods on Riemannian Manifolds
    P.-A. Absil
    C.G. Baker
    K.A. Gallivan
    [J]. Foundations of Computational Mathematics, 2007, 7 : 303 - 330
  • [8] A Riemannian symmetric rank-one trust-region method
    Huang, Wen
    Absil, P. -A.
    Gallivan, K. A.
    [J]. MATHEMATICAL PROGRAMMING, 2015, 150 (02) : 179 - 216
  • [9] A Riemannian symmetric rank-one trust-region method
    Wen Huang
    P.-A. Absil
    K. A. Gallivan
    [J]. Mathematical Programming, 2015, 150 : 179 - 216
  • [10] An implicit Riemannian Trust-Region method for the symmetric generalized eigenproblem
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 210 - 217