Haplotype assembly using Riemannian trust-region method

被引:0
|
作者
Mohades, M. M. [1 ]
Kahaei, M. H. [1 ]
Mohades, H. [2 ]
机构
[1] Iran Univ Sci & Technol, Sch Elect Engn, Tehran 1684613114, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Haplotype assembly; Manifold optimization; Riemannian trust-region; Convergence;
D O I
10.1016/j.dsp.2021.102999
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We model the Haplotype Assembly Problem (HAP) as a minimization problem over an (n - 1) dimensional sphere, where n is the haplotype length. A manifold optimization approach is proposed to solve this problem. To escape the saddle points, the Riemannian trust region method is utilized and its convergence is proved. Simulation results over both real and synthetic data show that the proposed method is considerably accurate for haplotype estimation. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] An implicit trust-region method on Riemannian manifolds
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 665 - 689
  • [2] Adaptive Trust-Region Method on Riemannian Manifold
    Shimin Zhao
    Tao Yan
    Kai Wang
    Yuanguo Zhu
    [J]. Journal of Scientific Computing, 2023, 96
  • [3] Adaptive Trust-Region Method on Riemannian Manifold
    Zhao, Shimin
    Yan, Tao
    Wang, Kai
    Zhu, Yuanguo
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [4] RIEMANNIAN TRUST-REGION METHOD FOR THE MAXIMAL CORRELATION PROBLEM
    Zhang, Lei-Hong
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (03) : 338 - 362
  • [5] Trust-region methods on Riemannian manifolds
    Absil, P-A.
    Baker, C. G.
    Gallivan, K. A.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2007, 7 (03) : 303 - 330
  • [6] Trust-Region Methods on Riemannian Manifolds
    P.-A. Absil
    C.G. Baker
    K.A. Gallivan
    [J]. Foundations of Computational Mathematics, 2007, 7 : 303 - 330
  • [7] A Riemannian symmetric rank-one trust-region method
    Huang, Wen
    Absil, P. -A.
    Gallivan, K. A.
    [J]. MATHEMATICAL PROGRAMMING, 2015, 150 (02) : 179 - 216
  • [8] A Riemannian symmetric rank-one trust-region method
    Wen Huang
    P.-A. Absil
    K. A. Gallivan
    [J]. Mathematical Programming, 2015, 150 : 179 - 216
  • [9] An implicit Riemannian Trust-Region method for the symmetric generalized eigenproblem
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 210 - 217
  • [10] Inexact trust-region algorithms on Riemannian manifolds
    Kasai, Hiroyuki
    Mishra, Bamdev
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31