RIEMANNIAN TRUST-REGION METHOD FOR THE MAXIMAL CORRELATION PROBLEM

被引:9
|
作者
Zhang, Lei-Hong [1 ]
机构
[1] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
关键词
Canonical correlation analysis; Global convergence; Multivariate statistics; Precondition; Riemannian trust-region method; Superlinear convergence; MULTIVARIATE EIGENVALUE PROBLEM; SETS; MANIFOLDS; VARIABLES; SDPT3;
D O I
10.1080/01630563.2011.618961
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The maximal correlation problem (MCP) arising in the canonical correlation analysis is very important to assess the relationship between sets of random variables. Efficient and fast methods for solving MCP are desired in broad statistical and nonstatistical applications. Some early proposed algorithms are based on the first-order information of MCP, and fast convergence could not be expected. In this article, we turn the generic Riemannian trust-region method of Absil et al. [2] into a practical algorithm for MCP, which enjoys the global convergence and local superlinear convergence rate. The structure-exploiting preconditioning technique is also discussed in solving the trust-region subproblem. Numerical empirical evaluation and a comparison against other methods are reported, which shows that the method is efficient in solving MCPs.
引用
收藏
页码:338 / 362
页数:25
相关论文
共 50 条
  • [1] An implicit trust-region method on Riemannian manifolds
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 665 - 689
  • [2] Adaptive Trust-Region Method on Riemannian Manifold
    Shimin Zhao
    Tao Yan
    Kai Wang
    Yuanguo Zhu
    [J]. Journal of Scientific Computing, 2023, 96
  • [3] Adaptive Trust-Region Method on Riemannian Manifold
    Zhao, Shimin
    Yan, Tao
    Wang, Kai
    Zhu, Yuanguo
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [4] Haplotype assembly using Riemannian trust-region method
    Mohades, M. M.
    Kahaei, M. H.
    Mohades, H.
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 112
  • [5] Trust-region methods on Riemannian manifolds
    Absil, P-A.
    Baker, C. G.
    Gallivan, K. A.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2007, 7 (03) : 303 - 330
  • [6] Trust-Region Methods on Riemannian Manifolds
    P.-A. Absil
    C.G. Baker
    K.A. Gallivan
    [J]. Foundations of Computational Mathematics, 2007, 7 : 303 - 330
  • [7] A Riemannian symmetric rank-one trust-region method
    Huang, Wen
    Absil, P. -A.
    Gallivan, K. A.
    [J]. MATHEMATICAL PROGRAMMING, 2015, 150 (02) : 179 - 216
  • [8] A Riemannian symmetric rank-one trust-region method
    Wen Huang
    P.-A. Absil
    K. A. Gallivan
    [J]. Mathematical Programming, 2015, 150 : 179 - 216
  • [9] An implicit Riemannian Trust-Region method for the symmetric generalized eigenproblem
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 210 - 217
  • [10] Inexact trust-region algorithms on Riemannian manifolds
    Kasai, Hiroyuki
    Mishra, Bamdev
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31