A Riemannian symmetric rank-one trust-region method

被引:51
|
作者
Huang, Wen [1 ]
Absil, P. -A. [2 ]
Gallivan, K. A. [1 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[2] Catholic Univ Louvain, Dept Engn Math, ICTEAM Inst, B-1348 Louvain, Belgium
关键词
Riemannian optimization; Optimization on manifolds; Symmetric rank-one update; Rayleigh quotient; Joint diagonalization; Stiefel manifold; QUASI-NEWTON MATRICES; ONE UPDATE; MANIFOLDS; OPTIMIZATION; CONVERGENCE; TENSORS;
D O I
10.1007/s10107-014-0765-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The well-known symmetric rank-one trust-region method-where the Hessian approximation is generated by the symmetric rank-one update-is generalized to the problem of minimizing a real-valued function over a -dimensional Riemannian manifold. The generalization relies on basic differential-geometric concepts, such as tangent spaces, Riemannian metrics, and the Riemannian gradient, as well as on the more recent notions of (first-order) retraction and vector transport. The new method, called RTR-SR1, is shown to converge globally and -step q-superlinearly to stationary points of the objective function. A limited-memory version, referred to as LRTR-SR1, is also introduced. In this context, novel efficient strategies are presented to construct a vector transport on a submanifold of a Euclidean space. Numerical experiments-Rayleigh quotient minimization on the sphere and a joint diagonalization problem on the Stiefel manifold-illustrate the value of the new methods.
引用
收藏
页码:179 / 216
页数:38
相关论文
共 50 条
  • [1] A Riemannian symmetric rank-one trust-region method
    Wen Huang
    P.-A. Absil
    K. A. Gallivan
    [J]. Mathematical Programming, 2015, 150 : 179 - 216
  • [2] A Limited-Memory Riemannian Symmetric Rank-One Trust-Region Method with a Restart Strategy
    Wen Huang
    Kyle A. Gallivan
    [J]. Journal of Scientific Computing, 2022, 93
  • [3] A Limited-Memory Riemannian Symmetric Rank-One Trust-Region Method with a Restart Strategy
    Huang, Wen
    Gallivan, Kyle A.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (01)
  • [4] A limited-memory Riemannian symmetric rank-one trust-region method with an efficient algorithm for its subproblem
    Huang, Wen
    Gallivan, Kyle A.
    [J]. IFAC PAPERSONLINE, 2021, 54 (09): : 572 - 577
  • [5] Analysis of a symmetric rank-one trust region method
    Byrd, RH
    Khalfan, HF
    Schnabel, RB
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (04) : 1025 - 1039
  • [6] An implicit Riemannian Trust-Region method for the symmetric generalized eigenproblem
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 210 - 217
  • [7] A Riemannian trust-region method for low-rank tensor completion
    Heidel, Gennadij
    Schulz, Volker
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (06)
  • [8] Adaptive Trust-Region Method on Riemannian Manifold
    Shimin Zhao
    Tao Yan
    Kai Wang
    Yuanguo Zhu
    [J]. Journal of Scientific Computing, 2023, 96
  • [9] An implicit trust-region method on Riemannian manifolds
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 665 - 689
  • [10] Adaptive Trust-Region Method on Riemannian Manifold
    Zhao, Shimin
    Yan, Tao
    Wang, Kai
    Zhu, Yuanguo
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)