Laplacian Operators and Radon Transforms on Grassmann Graphs

被引:0
|
作者
José Manuel Marco
Javier Parcet
机构
[1] Universidad Autónoma de Madrid,
[2] Centre de Recerca Matemàtica,undefined
来源
关键词
2000 Mathematics Subject Classification: 05A30, 05E30, 20G40, 33D45; Key words: Symmetric space, difference equation, basic hypergeometric function;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω be a vector space over a finite field with q elements. Let G denote the general linear group of automorphisms of Ω and let us consider the left regular representation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho: {\rm G} \rightarrow {\cal B}(L_2({\rm X}))$\end{document} associated with the natural action of G on the set X of linear subspaces of Ω. In this paper we study a natural basis B of the algebra EndG(L2(X)) of intertwining maps on L2(X). By using a Laplacian operator on Grassmann graphs, we identify the kernels in B as solutions of a basic hypergeometric difference equation. This provides two expressions for these kernels. One in terms of the q-Hahn polynomials and the other by means of a Rodrigues type formula. Finally, we obtain a useful product formula for the mappings in B. We give two different proofs. One uses the theory of classical hypergeometric polynomials and the other is supported by a characterization of spherical functions in finite symmetric spaces. Both proofs require the use of certain associated Radon transforms.
引用
收藏
页码:97 / 132
页数:35
相关论文
共 50 条