Laplacian Operators and Radon Transforms on Grassmann Graphs

被引:0
|
作者
José Manuel Marco
Javier Parcet
机构
[1] Universidad Autónoma de Madrid,
[2] Centre de Recerca Matemàtica,undefined
来源
关键词
2000 Mathematics Subject Classification: 05A30, 05E30, 20G40, 33D45; Key words: Symmetric space, difference equation, basic hypergeometric function;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω be a vector space over a finite field with q elements. Let G denote the general linear group of automorphisms of Ω and let us consider the left regular representation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho: {\rm G} \rightarrow {\cal B}(L_2({\rm X}))$\end{document} associated with the natural action of G on the set X of linear subspaces of Ω. In this paper we study a natural basis B of the algebra EndG(L2(X)) of intertwining maps on L2(X). By using a Laplacian operator on Grassmann graphs, we identify the kernels in B as solutions of a basic hypergeometric difference equation. This provides two expressions for these kernels. One in terms of the q-Hahn polynomials and the other by means of a Rodrigues type formula. Finally, we obtain a useful product formula for the mappings in B. We give two different proofs. One uses the theory of classical hypergeometric polynomials and the other is supported by a characterization of spherical functions in finite symmetric spaces. Both proofs require the use of certain associated Radon transforms.
引用
收藏
页码:97 / 132
页数:35
相关论文
共 50 条
  • [21] Convex curves, radon transforms and convolution operators defined by singular measures
    Ricci, F
    Travaglini, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (06) : 1739 - 1744
  • [22] Invertibility and stability for a generic class of radon transforms with application to dynamic operators
    RabieniaHaratbar, Siamak
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2019, 27 (04): : 469 - 486
  • [23] On locally Grassmann graphs
    Makhnev, Ras A. A.
    Paduchikh, D. V.
    DOKLADY MATHEMATICS, 2007, 76 (01) : 575 - 579
  • [24] A CHARACTERIZATION OF GRASSMANN GRAPHS
    METSCH, K
    EUROPEAN JOURNAL OF COMBINATORICS, 1995, 16 (06) : 639 - 644
  • [25] The endomorphisms of Grassmann graphs
    Huang, Li-Ping
    Lv, Benjian
    Wang, Kaishun
    ARS MATHEMATICA CONTEMPORANEA, 2016, 10 (02) : 383 - 392
  • [26] Motion-Adaptive Transforms Based on the Laplacian of Vertex-Weighted Graphs
    Liu, Du
    Flierl, Markus
    2014 DATA COMPRESSION CONFERENCE (DCC 2014), 2014, : 53 - 62
  • [27] Embeddings of Grassmann graphs
    Pankov, Mark
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3413 - 3424
  • [28] ON GRASSMANN ALGEBRAS OF GRAPHS
    MAKARLIMANOV, L
    JOURNAL OF ALGEBRA, 1984, 87 (02) : 283 - 289
  • [29] A characterization of the Grassmann graphs
    Gavrilyuk, Alexander L.
    Koolen, Jack H.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2025, 171 : 1 - 27
  • [30] On locally Grassmann graphs
    A. A. Makhnev
    D. V. Paduchikh
    Doklady Mathematics, 2007, 76 : 575 - 579