Laplacian Operators and Radon Transforms on Grassmann Graphs

被引:0
|
作者
José Manuel Marco
Javier Parcet
机构
[1] Universidad Autónoma de Madrid,
[2] Centre de Recerca Matemàtica,undefined
来源
关键词
2000 Mathematics Subject Classification: 05A30, 05E30, 20G40, 33D45; Key words: Symmetric space, difference equation, basic hypergeometric function;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω be a vector space over a finite field with q elements. Let G denote the general linear group of automorphisms of Ω and let us consider the left regular representation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho: {\rm G} \rightarrow {\cal B}(L_2({\rm X}))$\end{document} associated with the natural action of G on the set X of linear subspaces of Ω. In this paper we study a natural basis B of the algebra EndG(L2(X)) of intertwining maps on L2(X). By using a Laplacian operator on Grassmann graphs, we identify the kernels in B as solutions of a basic hypergeometric difference equation. This provides two expressions for these kernels. One in terms of the q-Hahn polynomials and the other by means of a Rodrigues type formula. Finally, we obtain a useful product formula for the mappings in B. We give two different proofs. One uses the theory of classical hypergeometric polynomials and the other is supported by a characterization of spherical functions in finite symmetric spaces. Both proofs require the use of certain associated Radon transforms.
引用
收藏
页码:97 / 132
页数:35
相关论文
共 50 条
  • [41] Isometric embeddings of Johnson graphs in Grassmann graphs
    Mark Pankov
    Journal of Algebraic Combinatorics, 2011, 33 : 555 - 570
  • [42] A Calderon-Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators
    Pramanik, Malabika
    Rogers, Keith M.
    Seeger, Andreas
    STUDIA MATHEMATICA, 2011, 202 (01) : 1 - 15
  • [43] The Terwilliger algebras of Grassmann graphs
    Gao, Xiaojuan
    Gao, Suogang
    Hou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 427 - 448
  • [44] A CHARACTERIZATION OF GRASSMANN AND JOHNSON GRAPHS
    NUMATA, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (02) : 178 - 190
  • [45] Embedding graphs on Grassmann manifold
    Zhou, Bingxin
    Zheng, Xuebin
    Wang, Yu Guang
    Li, Ming
    Gao, Junbin
    NEURAL NETWORKS, 2022, 152 : 322 - 331
  • [46] On the metric dimension of Grassmann graphs
    Bailey, Robert F.
    Meagher, Karen
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2011, 13 (04): : 97 - 104
  • [47] Differential Operators on Grassmann Varieties
    Traves, Will
    SYMMETRY AND SPACES: IN HONOR OF GERRY SCHWARZ, 2010, 278 : 197 - 207
  • [48] Endomorphisms of Twisted Grassmann Graphs
    Lv, Benjian
    Huang, Li-Ping
    Wang, Kaishun
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 157 - 169
  • [49] Endomorphisms of Twisted Grassmann Graphs
    Benjian Lv
    Li-Ping Huang
    Kaishun Wang
    Graphs and Combinatorics, 2017, 33 : 157 - 169
  • [50] GRAPHS WHICH ARE LOCALLY GRASSMANN
    WEISS, RW
    MATHEMATISCHE ANNALEN, 1993, 297 (02) : 325 - 334