The edge coloring game on trees with the number of colors greater than the game chromatic index

被引:0
|
作者
Wai Lam Fong
Wai Hong Chan
机构
来源
关键词
Game chromatic index; Game chromatic number; Graph coloring game; Tree; Line graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let X∈{A,B}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in \{A,B\}$$\end{document} and Y∈{A,B,-}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y\in \{A,B,-\}$$\end{document}, where A, B and − denote (player) Alice, (player) Bob and none of the players, respectively. In the k-[X, Y]-edge-coloring game, Alice and Bob alternately choose a color from a given color set with k colors to color an uncolored edge of a graph G such that no adjacent edges receive the same color. Player X begins and Player Y has the right to skip any number of turns. Alice wins the game if all the edges of G are finally colored; otherwise, Bob wins. The [X, Y]-game chromatic index of an uncolored graph G, denoted by χ[X,Y]′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[X,Y]}(G)$$\end{document}, is the least k such that Alice has a winning strategy for the game. We prove that, for any [X, Y], Alice has a winning strategy for the k-[X, Y]-edge-coloring game on any tree T when k>χ[X,Y]′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>\chi '_{[X,Y]}(T)$$\end{document}. Moreover, using some parts of the proofs of the above results, we show that there is a tree T satisfying χ[A,-]′(T)<χ[B,-]′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[A,-]}(T)<\chi '_{[B,-]}(T)$$\end{document} and χ[A,-]′(T-e)<χ[B,-]′(T-e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[A,-]}(T-e)<\chi '_{[B,-]}(T-e)$$\end{document} for some edge e of T. This solves an open problem proposed by Andres et al. (Discrete Appl Math 159:1660–1665, 2011).
引用
收藏
页码:456 / 480
页数:24
相关论文
共 50 条
  • [41] The eternal game chromatic number of random graphs
    Dvorak, Vojtech
    Herrman, Rebekah
    van Hintum, Peter
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 95
  • [42] ON THE GAME CHROMATIC NUMBER OF SOME CLASSES OF GRAPHS
    FAIGLE, U
    KERN, U
    KIERSTEAD, H
    TROTTER, WT
    ARS COMBINATORIA, 1993, 35 : 143 - 150
  • [43] ON THE GAME CHROMATIC NUMBER OF SPARSE RANDOM GRAPHS
    Frieze, Alan
    Haber, Simcha
    Lavrov, Mikhail
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) : 768 - 790
  • [44] Game chromatic number of some network graphs
    Alagammai, R.
    Vijayalakshmi, V.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02): : 391 - 401
  • [45] The game chromatic number of corona of two graphs
    Alagammai, R.
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 899 - 904
  • [46] The Game Chromatic Number of Dense Random Graphs
    Keusch, Ralph
    Steger, Angelika
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [47] Game chromatic number of Cartesian product graphs
    Bartnicki, T.
    Bresar, B.
    Grytczuk, J.
    Kovse, M.
    Miechowicz, Z.
    Peterin, I.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [48] On game chromatic number of oriented network graphs
    Renganathan, Alagammai
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024,
  • [49] The relaxed game chromatic number of outerplanar graphs
    Dunn, C
    Kierstead, HA
    JOURNAL OF GRAPH THEORY, 2004, 46 (01) : 69 - 78
  • [50] The Relaxed Game Chromatic Number of Outerplanar Graphs
    Department of Mathematics, Linfield College, McMinnville, OR 97128, United States
    不详
    1600, 69-78 (May 2004):