The edge coloring game on trees with the number of colors greater than the game chromatic index

被引:0
|
作者
Wai Lam Fong
Wai Hong Chan
机构
来源
关键词
Game chromatic index; Game chromatic number; Graph coloring game; Tree; Line graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let X∈{A,B}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in \{A,B\}$$\end{document} and Y∈{A,B,-}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y\in \{A,B,-\}$$\end{document}, where A, B and − denote (player) Alice, (player) Bob and none of the players, respectively. In the k-[X, Y]-edge-coloring game, Alice and Bob alternately choose a color from a given color set with k colors to color an uncolored edge of a graph G such that no adjacent edges receive the same color. Player X begins and Player Y has the right to skip any number of turns. Alice wins the game if all the edges of G are finally colored; otherwise, Bob wins. The [X, Y]-game chromatic index of an uncolored graph G, denoted by χ[X,Y]′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[X,Y]}(G)$$\end{document}, is the least k such that Alice has a winning strategy for the game. We prove that, for any [X, Y], Alice has a winning strategy for the k-[X, Y]-edge-coloring game on any tree T when k>χ[X,Y]′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>\chi '_{[X,Y]}(T)$$\end{document}. Moreover, using some parts of the proofs of the above results, we show that there is a tree T satisfying χ[A,-]′(T)<χ[B,-]′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[A,-]}(T)<\chi '_{[B,-]}(T)$$\end{document} and χ[A,-]′(T-e)<χ[B,-]′(T-e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[A,-]}(T-e)<\chi '_{[B,-]}(T-e)$$\end{document} for some edge e of T. This solves an open problem proposed by Andres et al. (Discrete Appl Math 159:1660–1665, 2011).
引用
收藏
页码:456 / 480
页数:24
相关论文
共 50 条
  • [21] Orderings on graphs and game coloring number
    Kierstead, HA
    Yang, DQ
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2003, 20 (03): : 255 - 264
  • [22] Marking Games and the Oriented Game Chromatic Number of Partial k-Trees
    H.A. Kierstead
    Zs. Tuza
    Graphs and Combinatorics, 2003, 19 : 121 - 129
  • [23] Marking games and the oriented game chromatic number of partial k-trees
    Kierstead, HA
    Tuza, Z
    GRAPHS AND COMBINATORICS, 2003, 19 (01) : 121 - 129
  • [24] A bound for the game chromatic number of graphs
    Dinski, T
    Zhu, XD
    DISCRETE MATHEMATICS, 1999, 196 (1-3) : 109 - 115
  • [25] Game chromatic number of toroidal grids
    Raspauld, Andre
    Wu, Jiaojiao
    INFORMATION PROCESSING LETTERS, 2009, 109 (21-22) : 1183 - 1186
  • [26] The eternal game chromatic number of a graph
    Klostermeyer, William F.
    Mendoza, Hannah
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2021, 116 : 13 - 25
  • [27] Playing a Game to Bound the Chromatic Number
    Panagopoulou, Panagiota N.
    Spirakis, Paul G.
    AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (09): : 771 - 778
  • [28] On Caterpillars of Game Chromatic Number 4
    Furtado, Ana
    Dantas, Simone
    de Figueiredo, Celina
    Gravier, Sylvain
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 461 - 472
  • [29] Relaxed game chromatic number of graphs
    Chou, CY
    Wang, WF
    Zhu, XD
    DISCRETE MATHEMATICS, 2003, 262 (1-3) : 89 - 98
  • [30] Game chromatic number of outerplanar graphs
    Guan, DJ
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 1999, 30 (01) : 67 - 70