The edge coloring game on trees with the number of colors greater than the game chromatic index

被引:0
|
作者
Wai Lam Fong
Wai Hong Chan
机构
来源
关键词
Game chromatic index; Game chromatic number; Graph coloring game; Tree; Line graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let X∈{A,B}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in \{A,B\}$$\end{document} and Y∈{A,B,-}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y\in \{A,B,-\}$$\end{document}, where A, B and − denote (player) Alice, (player) Bob and none of the players, respectively. In the k-[X, Y]-edge-coloring game, Alice and Bob alternately choose a color from a given color set with k colors to color an uncolored edge of a graph G such that no adjacent edges receive the same color. Player X begins and Player Y has the right to skip any number of turns. Alice wins the game if all the edges of G are finally colored; otherwise, Bob wins. The [X, Y]-game chromatic index of an uncolored graph G, denoted by χ[X,Y]′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[X,Y]}(G)$$\end{document}, is the least k such that Alice has a winning strategy for the game. We prove that, for any [X, Y], Alice has a winning strategy for the k-[X, Y]-edge-coloring game on any tree T when k>χ[X,Y]′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>\chi '_{[X,Y]}(T)$$\end{document}. Moreover, using some parts of the proofs of the above results, we show that there is a tree T satisfying χ[A,-]′(T)<χ[B,-]′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[A,-]}(T)<\chi '_{[B,-]}(T)$$\end{document} and χ[A,-]′(T-e)<χ[B,-]′(T-e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[A,-]}(T-e)<\chi '_{[B,-]}(T-e)$$\end{document} for some edge e of T. This solves an open problem proposed by Andres et al. (Discrete Appl Math 159:1660–1665, 2011).
引用
收藏
页码:456 / 480
页数:24
相关论文
共 50 条
  • [31] Circular game chromatic number of graphs
    Lin, Wensong
    Zhu, Xuding
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4495 - 4501
  • [32] The game chromatic number of random graphs
    Bohman, Tom
    Frieze, Alan
    Sudakov, Benny
    RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (02) : 223 - 235
  • [33] ON GRAPHS WITH MAXIMUM DIFFERENCE BETWEEN GAME CHROMATIC NUMBER AND CHROMATIC NUMBER
    Hollom, Lawrence
    arXiv, 2023,
  • [34] The game chromatic index of special graphs
    Yazdi, Elham Sharifi
    2021 52ND ANNUAL IRANIAN MATHEMATICS CONFERENCE (AIMC), 2021, : 24 - 26
  • [35] A note on the game chromatic index of graphs
    Bartnicki, Tomasz
    Grytczuk, Jaroslaw
    GRAPHS AND COMBINATORICS, 2008, 24 (02) : 67 - 70
  • [36] A Note on the Game Chromatic Index of Graphs
    Tomasz Bartnicki
    Jarosław Grytczuk
    Graphs and Combinatorics, 2008, 24 : 67 - 70
  • [37] Game chromatic number of honeycomb related networks
    Imran, Muhammad
    Bokhary, Syed Ahtsham Ul Haq
    Akhtar, Muhammad Shahzad
    Matsumoto, Naoki
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (04) : 747 - 757
  • [38] Game chromatic number of lexicographic product graphs
    Alagammai, R.
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 216 - 220
  • [39] Game chromatic number of some network graphs
    R. Alagammai
    V. Vijayalakshmi
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 391 - 401
  • [40] Game chromatic number of strong product graphs
    Enomoto, Hikoe
    Fujisawa, Jun
    Matsumoto, Naoki
    DISCRETE MATHEMATICS, 2023, 346 (01)