The edge coloring game on trees with the number of colors greater than the game chromatic index

被引:0
|
作者
Wai Lam Fong
Wai Hong Chan
机构
来源
关键词
Game chromatic index; Game chromatic number; Graph coloring game; Tree; Line graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let X∈{A,B}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X\in \{A,B\}$$\end{document} and Y∈{A,B,-}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y\in \{A,B,-\}$$\end{document}, where A, B and − denote (player) Alice, (player) Bob and none of the players, respectively. In the k-[X, Y]-edge-coloring game, Alice and Bob alternately choose a color from a given color set with k colors to color an uncolored edge of a graph G such that no adjacent edges receive the same color. Player X begins and Player Y has the right to skip any number of turns. Alice wins the game if all the edges of G are finally colored; otherwise, Bob wins. The [X, Y]-game chromatic index of an uncolored graph G, denoted by χ[X,Y]′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[X,Y]}(G)$$\end{document}, is the least k such that Alice has a winning strategy for the game. We prove that, for any [X, Y], Alice has a winning strategy for the k-[X, Y]-edge-coloring game on any tree T when k>χ[X,Y]′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>\chi '_{[X,Y]}(T)$$\end{document}. Moreover, using some parts of the proofs of the above results, we show that there is a tree T satisfying χ[A,-]′(T)<χ[B,-]′(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[A,-]}(T)<\chi '_{[B,-]}(T)$$\end{document} and χ[A,-]′(T-e)<χ[B,-]′(T-e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_{[A,-]}(T-e)<\chi '_{[B,-]}(T-e)$$\end{document} for some edge e of T. This solves an open problem proposed by Andres et al. (Discrete Appl Math 159:1660–1665, 2011).
引用
收藏
页码:456 / 480
页数:24
相关论文
共 50 条
  • [1] The edge coloring game on trees with the number of colors greater than the game chromatic index
    Fong, Wai Lam
    Chan, Wai Hong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (02) : 456 - 480
  • [2] The Game Chromatic Number of Trees and Forests
    Dunn, Charles
    Larsen, Victor
    Lindke, Kira
    Retter, Troy
    Toci, Dustin
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (02): : 31 - 48
  • [3] Note on the game chromatic index of trees
    Erdös, PL
    Faigle, U
    Hochstättler, W
    Kern, W
    THEORETICAL COMPUTER SCIENCE, 2004, 313 (03) : 371 - 376
  • [4] On the degree of trees with game chromatic number 4
    Furtado, Ana Luisa C.
    Palma, Miguel A. D. R.
    Dantas, Simone
    de Figueiredo, Celina M. H.
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (05) : 2757 - 2767
  • [5] Online edge coloring of paths and trees with a fixed number of colors
    Favrholdt, Lene M.
    Mikkelsen, Jesper W.
    ACTA INFORMATICA, 2018, 55 (01) : 57 - 80
  • [6] Online edge coloring of paths and trees with a fixed number of colors
    Lene M. Favrholdt
    Jesper W. Mikkelsen
    Acta Informatica, 2018, 55 : 57 - 80
  • [7] Relaxed game chromatic number of trees and outerplanar graphs
    He, WJ
    Wu, JJ
    Zhu, XD
    DISCRETE MATHEMATICS, 2004, 281 (1-3) : 209 - 219
  • [8] The game chromatic number and the game colouring number of cactuses
    Sidorowicz, Elzbieta
    INFORMATION PROCESSING LETTERS, 2007, 102 (04) : 147 - 151
  • [9] The game coloring number of pseudo partial k-trees
    Zhu, XD
    DISCRETE MATHEMATICS, 2000, 215 (1-3) : 245 - 262
  • [10] The game chromatic index of some trees of maximum degree 4
    Chan, Wai Hong
    Nong, Ge
    DISCRETE APPLIED MATHEMATICS, 2014, 170 : 1 - 6