scMD facilitates cell type deconvolution using single-cell DNA methylation references

被引:0
|
作者
Manqi Cai
Jingtian Zhou
Chris McKennan
Jiebiao Wang
机构
[1] University of Pittsburgh,Department of Biostatistics
[2] The Salk Institute for Biological Studies,Genomic Analysis Laboratory
[3] University of California,Bioinformatics and Systems Biology Program
[4] University of Pittsburgh,Department of Statistics
[5] University of Pittsburgh,Clinical and Translational Science Institute
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The proliferation of single-cell RNA-sequencing data has led to the widespread use of cellular deconvolution, aiding the extraction of cell-type-specific information from extensive bulk data. However, those advances have been mostly limited to transcriptomic data. With recent developments in single-cell DNA methylation (scDNAm), there are emerging opportunities for deconvolving bulk DNAm data, particularly for solid tissues like brain that lack cell-type references. Due to technical limitations, current scDNAm sequences represent a small proportion of the whole genome for each single cell, and those detected regions differ across cells. This makes scDNAm data ultra-high dimensional and ultra-sparse. To deal with these challenges, we introduce scMD (single cell Methylation Deconvolution), a cellular deconvolution framework to reliably estimate cell type fractions from tissue-level DNAm data. To analyze large-scale complex scDNAm data, scMD employs a statistical approach to aggregate scDNAm data at the cell cluster level, identify cell-type marker DNAm sites, and create precise cell-type signature matrixes that surpass state-of-the-art sorted-cell or RNA-derived references. Through thorough benchmarking in several datasets, we demonstrate scMD’s superior performance in estimating cellular fractions from bulk DNAm data. With scMD-estimated cellular fractions, we identify cell type fractions and cell type-specific differentially methylated cytosines associated with Alzheimer’s disease.
引用
收藏
相关论文
共 50 条
  • [41] Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data
    P. E. de Souza, Camila
    Andronescu, Mirela
    Masud, Tehmina
    Kabeer, Farhia
    Biele, Justina
    Laks, Emma
    Lai, Daniel
    Ye, Patricia
    Brimhall, Jazmine
    Wang, Beixi
    Su, Edmund
    Hui, Tony
    Cao, Qi
    Wong, Marcus
    Moksa, Michelle
    Moore, Richard A.
    Hirst, Martin
    Aparicio, Samuel
    Shah, Sohrab P.
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
  • [42] scMET: Bayesian modeling of DNA methylation heterogeneity at single-cell resolution
    Kapourani, Chantriolnt-Andreas
    Argelaguet, Ricard
    Sanguinetti, Guido
    Vallejos, Catalina A.
    GENOME BIOLOGY, 2021, 22 (01)
  • [43] Prospects for Use of Single-Cell Sequencing to Assess DNA Methylation in Asthma
    Men, Shuai
    Yu, Yanyan
    MEDICAL SCIENCE MONITOR, 2020, 26
  • [44] scMET: Bayesian modeling of DNA methylation heterogeneity at single-cell resolution
    Chantriolnt-Andreas Kapourani
    Ricard Argelaguet
    Guido Sanguinetti
    Catalina A. Vallejos
    Genome Biology, 22
  • [45] Erratum to: DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
    Christof Angermueller
    Heather J. Lee
    Wolf Reik
    Oliver Stegle
    Genome Biology, 18
  • [46] Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
    Bin Li
    Wen Zhang
    Chuang Guo
    Hao Xu
    Longfei Li
    Minghao Fang
    Yinlei Hu
    Xinye Zhang
    Xinfeng Yao
    Meifang Tang
    Ke Liu
    Xuetong Zhao
    Jun Lin
    Linzhao Cheng
    Falai Chen
    Tian Xue
    Kun Qu
    Nature Methods, 2022, 19 : 662 - 670
  • [47] Deconvolution at the single-cell level reveals ovarian cell-type-specific transcriptomic changes in PCOS
    Li, Shumin
    Li, Yimeng
    Sun, Yu
    Feng, Gengchen
    Yang, Ziyi
    Yan, Xueqi
    Gao, Xueying
    Jiang, Yonghui
    Du, Yanzhi
    Zhao, Shigang
    Zhao, Han
    Chen, Zi-Jiang
    REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY, 2024, 22 (01)
  • [48] Deconvolution at the single-cell level reveals ovarian cell-type-specific transcriptomic changes in PCOS
    Shumin Li
    Yimeng Li
    Yu Sun
    Gengchen Feng
    Ziyi Yang
    Xueqi Yan
    Xueying Gao
    Yonghui Jiang
    Yanzhi Du
    Shigang Zhao
    Han Zhao
    Zi-Jiang Chen
    Reproductive Biology and Endocrinology, 22
  • [49] Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
    Li, Bin
    Zhang, Wen
    Guo, Chuang
    Xu, Hao
    Li, Longfei
    Fang, Minghao
    Hu, Yinlei
    Zhang, Xinye
    Yao, Xinfeng
    Tang, Meifang
    Liu, Ke
    Zhao, Xuetong
    Lin, Jun
    Cheng, Linzhao
    Chen, Falai
    Xue, Tian
    Qu, Kun
    NATURE METHODS, 2022, 19 (06) : 662 - +
  • [50] Identifying cellular markers of focal cortical dysplasia type II with cell-type deconvolution and single-cell signatures
    Galvao, Isabella C.
    Kandratavicius, Ludmyla
    Messias, Lauana A.
    Athie, Maria C. P.
    Assis-Mendonca, Guilherme R.
    Alvim, Marina K. M.
    Ghizoni, Enrico
    Tedeschi, Helder
    Yasuda, Clarissa L.
    Cendes, Fernando
    Vieira, Andre S.
    Rogerio, Fabio
    Lopes-Cendes, Iscia
    Veiga, Diogo F. T.
    SCIENTIFIC REPORTS, 2023, 13 (01)