scMD facilitates cell type deconvolution using single-cell DNA methylation references

被引:0
|
作者
Manqi Cai
Jingtian Zhou
Chris McKennan
Jiebiao Wang
机构
[1] University of Pittsburgh,Department of Biostatistics
[2] The Salk Institute for Biological Studies,Genomic Analysis Laboratory
[3] University of California,Bioinformatics and Systems Biology Program
[4] University of Pittsburgh,Department of Statistics
[5] University of Pittsburgh,Clinical and Translational Science Institute
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The proliferation of single-cell RNA-sequencing data has led to the widespread use of cellular deconvolution, aiding the extraction of cell-type-specific information from extensive bulk data. However, those advances have been mostly limited to transcriptomic data. With recent developments in single-cell DNA methylation (scDNAm), there are emerging opportunities for deconvolving bulk DNAm data, particularly for solid tissues like brain that lack cell-type references. Due to technical limitations, current scDNAm sequences represent a small proportion of the whole genome for each single cell, and those detected regions differ across cells. This makes scDNAm data ultra-high dimensional and ultra-sparse. To deal with these challenges, we introduce scMD (single cell Methylation Deconvolution), a cellular deconvolution framework to reliably estimate cell type fractions from tissue-level DNAm data. To analyze large-scale complex scDNAm data, scMD employs a statistical approach to aggregate scDNAm data at the cell cluster level, identify cell-type marker DNAm sites, and create precise cell-type signature matrixes that surpass state-of-the-art sorted-cell or RNA-derived references. Through thorough benchmarking in several datasets, we demonstrate scMD’s superior performance in estimating cellular fractions from bulk DNAm data. With scMD-estimated cellular fractions, we identify cell type fractions and cell type-specific differentially methylated cytosines associated with Alzheimer’s disease.
引用
收藏
相关论文
共 50 条
  • [21] Tracing Dynamic Changes of DNA Methylation at Single-Cell Resolution
    Stelzer, Yonatan
    Shivalila, Chikdu Shakti
    Soldner, Frank
    Markoulaki, Styliani
    Jaenisch, Rudolf
    CELL, 2015, 163 (01) : 218 - 229
  • [22] DNA methylation atlas of the mouse brain at single-cell resolution
    Liu, Hanqing
    Zhou, Jingtian
    Tian, Wei
    Luo, Chongyuan
    Bartlett, Anna
    Aldridge, Andrew
    Lucero, Jacinta
    Osteen, Julia K.
    Nery, Joseph R.
    Chen, Huaming
    Rivkin, Angeline
    Castanon, Rosa G.
    Clock, Ben
    Li, Yang Eric
    Hou, Xiaomeng
    Poirion, Olivier B.
    Preissl, Sebastian
    Pinto-Duarte, Antonio
    O'Connor, Carolyn
    Boggeman, Lara
    Fitzpatrick, Conor
    Nunn, Michael
    Mukamel, Eran A.
    Zhang, Zhuzhu
    Callaway, Edward M.
    Ren, Bing
    Dixon, Jesse R.
    Behrens, M. Margarita
    Ecker, Joseph R.
    NATURE, 2021, 598 (7879) : 120 - +
  • [23] DNA methylation atlas of the mouse brain at single-cell resolution
    Hanqing Liu
    Jingtian Zhou
    Wei Tian
    Chongyuan Luo
    Anna Bartlett
    Andrew Aldridge
    Jacinta Lucero
    Julia K. Osteen
    Joseph R. Nery
    Huaming Chen
    Angeline Rivkin
    Rosa G. Castanon
    Ben Clock
    Yang Eric Li
    Xiaomeng Hou
    Olivier B. Poirion
    Sebastian Preissl
    Antonio Pinto-Duarte
    Carolyn O’Connor
    Lara Boggeman
    Conor Fitzpatrick
    Michael Nunn
    Eran A. Mukamel
    Zhuzhu Zhang
    Edward M. Callaway
    Bing Ren
    Jesse R. Dixon
    M. Margarita Behrens
    Joseph R. Ecker
    Nature, 2021, 598 : 120 - 128
  • [24] Single-Cell DNA Methylation Analysis of Chicken Lampbrush Chromosomes
    Nurislamov, Artem
    Lagunov, Timofey
    Gridina, Maria
    Krasikova, Alla
    Fishman, Veniamin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (20)
  • [25] Resolving Epigenetic Heterogeneity with Single-Cell DNA Methylation Analysis
    Genetic Engineering and Biotechnology News, 2024, 44 (04): : 35
  • [26] Spatial transcriptomics deconvolution at single-cell resolution using Redeconve
    Zhou, Zixiang
    Zhong, Yunshan
    Zhang, Zemin
    Ren, Xianwen
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [27] Spatial transcriptomics deconvolution at single-cell resolution using Redeconve
    Zixiang Zhou
    Yunshan Zhong
    Zemin Zhang
    Xianwen Ren
    Nature Communications, 14
  • [28] scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
    Zhu, Hao
    Liu, Tong
    Wang, Zheng
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [29] Precise identification of cell states altered in disease using healthy single-cell references
    Emma Dann
    Ana-Maria Cujba
    Amanda J. Oliver
    Kerstin B. Meyer
    Sarah A. Teichmann
    John C. Marioni
    Nature Genetics, 2023, 55 : 1998 - 2008
  • [30] Precise identification of cell states altered in disease using healthy single-cell references
    Dann, Emma
    Cujba, Ana-Maria
    Oliver, Amanda J.
    Meyer, Kerstin B.
    Teichmann, Sarah A.
    Marioni, John C.
    NATURE GENETICS, 2023, 55 (11) : 1998 - +