Spatial transcriptomics deconvolution at single-cell resolution using Redeconve

被引:0
|
作者
Zixiang Zhou
Yunshan Zhong
Zemin Zhang
Xianwen Ren
机构
[1] Changping Laboratory,Biomedical Pioneering Innovation Center (BIOPIC)
[2] Peking University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Computational deconvolution with single-cell RNA sequencing data as reference is pivotal to interpreting spatial transcriptomics data, but the current methods are limited to cell-type resolution. Here we present Redeconve, an algorithm to deconvolute spatial transcriptomics data at single-cell resolution, enabling interpretation of spatial transcriptomics data with thousands of nuanced cell states. We benchmark Redeconve with the state-of-the-art algorithms on diverse spatial transcriptomics platforms and datasets and demonstrate the superiority of Redeconve in terms of accuracy, resolution, robustness, and speed. Application to a human pancreatic cancer dataset reveals cancer-clone-specific T cell infiltration, and application to lymph node samples identifies differential cytotoxic T cells between IgA+ and IgG+ spots, providing novel insights into tumor immunology and the regulatory mechanisms underlying antibody class switch.
引用
收藏
相关论文
共 50 条
  • [1] Spatial transcriptomics deconvolution at single-cell resolution using Redeconve
    Zhou, Zixiang
    Zhong, Yunshan
    Zhang, Zemin
    Ren, Xianwen
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] SPASCER: spatial transcriptomics annotation at single-cell resolution
    Fan, Zhiwei
    Luo, Yangyang
    Lu, Huifen
    Wang, Tiangang
    Feng, YuZhou
    Zhao, Weiling
    Kim, Pora
    Zhou, Xiaobo
    NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) : D1138 - D1149
  • [3] Single-cell spatial transcriptomics
    Weber, Christine
    NATURE CELL BIOLOGY, 2021, 23 (11) : 1108 - 1108
  • [4] Single-cell spatial transcriptomics
    Christine Weber
    Nature Cell Biology, 2021, 23 : 1108 - 1108
  • [5] Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution
    Brianna R. Watson
    Biplab Paul
    Raza Ur Rahman
    Liat Amir-Zilberstein
    Åsa Segerstolpe
    Eliana T. Epstein
    Shane Murphy
    Ludwig Geistlinger
    Tyrone Lee
    Angela Shih
    Jacques Deguine
    Ramnik J. Xavier
    Jeffrey R. Moffitt
    Alan C. Mullen
    Nature Communications, 16 (1)
  • [6] Spatial transcriptomics of murine bone marrow megakaryocytes at single-cell resolution
    Tilburg, Julia
    Stone, Andrew P.
    Billingsley, James M.
    Scoville, David K.
    Pavenko, Anna
    Liang, Yan
    Italiano, Joseph E., Jr.
    Machlus, Kellie R.
    RESEARCH AND PRACTICE IN THROMBOSIS AND HAEMOSTASIS, 2023, 7 (04)
  • [7] Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution
    Dar, Daniel
    Dar, Nina
    Cai, Long
    Newman, Dianne K.
    SCIENCE, 2021, 373 (6556) : 758 - +
  • [8] Spatial transcriptomics with single cell resolution
    Braubach, Oliver
    JOURNAL OF IMMUNOLOGY, 2020, 204 (01):
  • [9] Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
    Bin Li
    Wen Zhang
    Chuang Guo
    Hao Xu
    Longfei Li
    Minghao Fang
    Yinlei Hu
    Xinye Zhang
    Xinfeng Yao
    Meifang Tang
    Ke Liu
    Xuetong Zhao
    Jun Lin
    Linzhao Cheng
    Falai Chen
    Tian Xue
    Kun Qu
    Nature Methods, 2022, 19 : 662 - 670
  • [10] Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
    Li, Bin
    Zhang, Wen
    Guo, Chuang
    Xu, Hao
    Li, Longfei
    Fang, Minghao
    Hu, Yinlei
    Zhang, Xinye
    Yao, Xinfeng
    Tang, Meifang
    Liu, Ke
    Zhao, Xuetong
    Lin, Jun
    Cheng, Linzhao
    Chen, Falai
    Xue, Tian
    Qu, Kun
    NATURE METHODS, 2022, 19 (06) : 662 - +