Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution

被引:254
|
作者
Li, Bin [1 ]
Zhang, Wen [1 ,2 ]
Guo, Chuang [1 ]
Xu, Hao [1 ,2 ]
Li, Longfei [3 ]
Fang, Minghao [3 ]
Hu, Yinlei [4 ]
Zhang, Xinye [3 ]
Yao, Xinfeng [1 ]
Tang, Meifang [1 ]
Liu, Ke [1 ]
Zhao, Xuetong [5 ]
Lin, Jun [1 ,2 ]
Cheng, Linzhao [3 ]
Chen, Falai [4 ]
Xue, Tian [3 ]
Qu, Kun [1 ,2 ,6 ]
机构
[1] Univ Sci & Technol China, Affiliated Hosp 1, Sch Basic Med Sci, Dept Oncol,USTC,Div Life Sci & Med, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Univ Sci & Technol China, Div Life Sci & Med, Hefei, Peoples R China
[4] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
[5] Chinese Acad Sci, Inst Microbiol, CAS Key Lab Microbial Physiol & Metab Engn, Beijing, Peoples R China
[6] Univ Sci & Technol China, CAS Ctr Excellence Mol Cell Sci, CAS Key Lab Innate Immun & Chron Dis, Hefei, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
GENOME-WIDE EXPRESSION; RNA-SEQ; GENE-EXPRESSION; ATLAS; VISUALIZATION;
D O I
10.1038/s41592-022-01480-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data with single-cell RNA-seq data to predict the spatial distribution of undetected transcripts and/or perform cell type deconvolution of spots in histological sections. However, to date, no independent studies have comparatively analyzed these integration methods to benchmark their performance. Here we present benchmarking of 16 integration methods using 45 paired datasets (comprising both spatial transcriptomics and scRNA-seq data) and 32 simulated datasets. We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. We provide a benchmark pipeline to help researchers select optimal integration methods to process their datasets. This work presents a comprehensive benchmarking analysis of computational methods that integrates spatial and single-cell transcriptomics data for transcript distribution prediction and cell type deconvolution.
引用
收藏
页码:662 / +
页数:28
相关论文
共 50 条
  • [1] Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
    Bin Li
    Wen Zhang
    Chuang Guo
    Hao Xu
    Longfei Li
    Minghao Fang
    Yinlei Hu
    Xinye Zhang
    Xinfeng Yao
    Meifang Tang
    Ke Liu
    Xuetong Zhao
    Jun Lin
    Linzhao Cheng
    Falai Chen
    Tian Xue
    Kun Qu
    Nature Methods, 2022, 19 : 662 - 670
  • [3] Benchmarking spatial and single-cell transcriptomics integration methods
    Lin, Jun
    Qu, Kun
    NATURE METHODS, 2022, 19 (06) : 656 - 657
  • [4] Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics
    Sang-aram, Chananchida
    Browaeys, Robin
    Seurinck, Ruth
    Saeys, Yvan
    ELIFE, 2024, 12
  • [5] Spatial transcriptomics deconvolution at single-cell resolution using Redeconve
    Zixiang Zhou
    Yunshan Zhong
    Zemin Zhang
    Xianwen Ren
    Nature Communications, 14
  • [6] Spatial transcriptomics deconvolution at single-cell resolution using Redeconve
    Zhou, Zixiang
    Zhong, Yunshan
    Zhang, Zemin
    Ren, Xianwen
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [7] Single-cell spatial transcriptomics
    Weber, Christine
    NATURE CELL BIOLOGY, 2021, 23 (11) : 1108 - 1108
  • [8] Single-cell spatial transcriptomics
    Christine Weber
    Nature Cell Biology, 2021, 23 : 1108 - 1108
  • [9] Integration of Computational Analysis and Spatial Transcriptomics in Single-cell Studies
    Wang, Ran
    Peng, Guangdun
    Tam, Patrick P. L.
    Jing, Naihe
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 13 - 23
  • [10] Benchmarking unpaired single-cell RNA and single-cell ATAC integration
    Chen, Jiani
    Xiao, Wanzi
    Zhang, Eric
    Chen, Xiang
    CANCER RESEARCH, 2023, 84 (06)