Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution

被引:254
|
作者
Li, Bin [1 ]
Zhang, Wen [1 ,2 ]
Guo, Chuang [1 ]
Xu, Hao [1 ,2 ]
Li, Longfei [3 ]
Fang, Minghao [3 ]
Hu, Yinlei [4 ]
Zhang, Xinye [3 ]
Yao, Xinfeng [1 ]
Tang, Meifang [1 ]
Liu, Ke [1 ]
Zhao, Xuetong [5 ]
Lin, Jun [1 ,2 ]
Cheng, Linzhao [3 ]
Chen, Falai [4 ]
Xue, Tian [3 ]
Qu, Kun [1 ,2 ,6 ]
机构
[1] Univ Sci & Technol China, Affiliated Hosp 1, Sch Basic Med Sci, Dept Oncol,USTC,Div Life Sci & Med, Hefei, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
[3] Univ Sci & Technol China, Div Life Sci & Med, Hefei, Peoples R China
[4] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
[5] Chinese Acad Sci, Inst Microbiol, CAS Key Lab Microbial Physiol & Metab Engn, Beijing, Peoples R China
[6] Univ Sci & Technol China, CAS Ctr Excellence Mol Cell Sci, CAS Key Lab Innate Immun & Chron Dis, Hefei, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
GENOME-WIDE EXPRESSION; RNA-SEQ; GENE-EXPRESSION; ATLAS; VISUALIZATION;
D O I
10.1038/s41592-022-01480-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics approaches have substantially advanced our capacity to detect the spatial distribution of RNA transcripts in tissues, yet it remains challenging to characterize whole-transcriptome-level data for single cells in space. Addressing this need, researchers have developed integration methods to combine spatial transcriptomic data with single-cell RNA-seq data to predict the spatial distribution of undetected transcripts and/or perform cell type deconvolution of spots in histological sections. However, to date, no independent studies have comparatively analyzed these integration methods to benchmark their performance. Here we present benchmarking of 16 integration methods using 45 paired datasets (comprising both spatial transcriptomics and scRNA-seq data) and 32 simulated datasets. We found that Tangram, gimVI, and SpaGE outperformed other integration methods for predicting the spatial distribution of RNA transcripts, whereas Cell2location, SpatialDWLS, and RCTD are the top-performing methods for the cell type deconvolution of spots. We provide a benchmark pipeline to help researchers select optimal integration methods to process their datasets. This work presents a comprehensive benchmarking analysis of computational methods that integrates spatial and single-cell transcriptomics data for transcript distribution prediction and cell type deconvolution.
引用
收藏
页码:662 / +
页数:28
相关论文
共 50 条
  • [21] A targeted sequencing extension for transcript genotyping in single-cell transcriptomics
    Van Horebeek, Lies
    David, Margaux
    Dedoncker, Nina
    Mallants, Klara
    Bijnens, Baukje
    Goris, An
    Dubois, Benedicte
    LIFE SCIENCE ALLIANCE, 2023, 6 (11)
  • [22] Spatially informed cell-type deconvolution for spatial transcriptomics
    Ma, Ying
    Zhou, Xiang
    NATURE BIOTECHNOLOGY, 2022, 40 (09) : 1349 - +
  • [23] Spatially informed cell-type deconvolution for spatial transcriptomics
    Ying Ma
    Xiang Zhou
    Nature Biotechnology, 2022, 40 (9) : 1349 - 1359
  • [24] Benchmarking clustering, alignment, and integration methods for spatial transcriptomics
    Hu, Yunfei
    Xie, Manfei
    Li, Yikang
    Rao, Mingxing
    Shen, Wenjun
    Luo, Can
    Qin, Haoran
    Baek, Jihoon
    Zhou, Xin Maizie
    GENOME BIOLOGY, 2024, 25 (01):
  • [25] Integration of single-cell and spatial transcriptomics reveals fibroblast subtypes in hepatocellular carcinoma: spatial distribution, differentiation trajectories, and therapeutic potential
    Yue Liu
    Guoping Dong
    Jie Yu
    Ping Liang
    Journal of Translational Medicine, 23 (1)
  • [26] SPASCER: spatial transcriptomics annotation at single-cell resolution
    Fan, Zhiwei
    Luo, Yangyang
    Lu, Huifen
    Wang, Tiangang
    Feng, YuZhou
    Zhao, Weiling
    Kim, Pora
    Zhou, Xiaobo
    NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) : D1138 - D1149
  • [27] Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids
    van den Brink, Susanne C.
    Alemany, Anna
    van Batenburg, Vincent
    Moris, Naomi
    Blotenburg, Marloes
    Vivie, Judith
    Baillie-Johnson, Peter
    Nichols, Jennifer
    Sonnen, Katharina F.
    Martinez Arias, Alfonso
    van Oudenaarden, Alexander
    NATURE, 2020, 582 (7812) : 405 - +
  • [28] Embryo-scale, single-cell spatial transcriptomics
    Srivatsan, Sanjay R.
    Regier, Mary C.
    Barkan, Eliza
    Franks, Jennifer M.
    Packer, Jonathan S.
    Grosjean, Parker
    Duran, Madeleine
    Saxton, Sarah
    Ladd, Jon J.
    Spielmann, Malte
    Lois, Carlos
    Lampe, Paul D.
    Shendure, Jay
    Stevens, Kelly R.
    Trapnell, Cole
    SCIENCE, 2021, 373 (6550) : 111 - +
  • [29] Single-cell spatial transcriptomics analysis of a regenerating liver
    Monga, Satdarshan P.
    Ko, Sungjin
    Hu, Shikai
    Singh, Sucha
    Poddar, Minakshi
    FASEB JOURNAL, 2022, 36
  • [30] Encoding Method of Single-cell Spatial Transcriptomics Sequencing
    Zhou, Ying
    Jia, Erteng
    Pan, Min
    Zhao, Xiangwei
    Ge, Qinyu
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2020, 16 (14): : 2663 - 2674