Dictionary-based model reduction for state estimation

被引:0
|
作者
Nouy, Anthony [1 ]
Pasco, Alexandre [1 ]
机构
[1] Nantes Univ, Cent Nantes, Lab Math Jean Leray UMR CNRS 6629, F-44322 Nantes, France
关键词
Inverse problem; Model order reduction; Sparse approximation; Randomized linear algebra; REDUCED BASIS METHOD; INTERPOLATION; ALGORITHMS;
D O I
10.1007/s10444-024-10129-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of state estimation from a few linear measurements, where the state to recover is an element of the manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of solutions of a parameter-dependent equation. The state is estimated using prior knowledge on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} coming from model order reduction. Variational approaches based on linear approximation of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, such as PBDW, yield a recovery error limited by the Kolmogorov width of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}. To overcome this issue, piecewise-affine approximations of M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} have also been considered, that consist in using a library of linear spaces among which one is selected by minimizing some distance to M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}. In this paper, we propose a state estimation method relying on dictionary-based model reduction, where space is selected from a library generated by a dictionary of snapshots, using a distance to the manifold. The selection is performed among a set of candidate spaces obtained from a set of & ell;1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-regularized least-squares problems. Then, in the framework of parameter-dependent operator equations (or PDEs) with affine parametrizations, we provide an efficient offline-online decomposition based on randomized linear algebra, that ensures efficient and stable computations while preserving theoretical guarantees.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] The Overcomplete Dictionary-Based Directional Estimation Model and Nonconvex Reconstruction Methods
    Lin, Leping
    Liu, Fang
    Jiao, Licheng
    Yang, Shuyuan
    Hao, Hongxia
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (03) : 1042 - 1053
  • [2] Dictionary-based anisotropic diffusion for noise reduction
    Cho, Sung In
    Kang, Suk-Ju
    Kim, Hi-Seok
    Kim, Young Hwan
    PATTERN RECOGNITION LETTERS, 2014, 46 : 36 - 45
  • [3] Dictionary-based experiment design for estimation of marine models
    Ljungberg, Fredrik
    Linder, Jonas
    Enqvist, Martin
    Tervo, Kalevi
    CONTROL ENGINEERING PRACTICE, 2023, 135
  • [4] A Dictionary-Based Algorithm for Dimensionality Reduction and Data Reconstruction
    Zhao, Zhong
    Feng, Guocan
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 1556 - 1561
  • [5] A Dynamic Dictionary-Based Sparse Reconstruction Method for DOA Estimation
    Wang, Xiaoting
    Lan, Xiang
    PROCEEDINGS OF THE 2024 6TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING SYSTEMS, SSPS 2024, 2024, : 1 - 5
  • [6] Dictionary-based fiber orientation estimation with improved spatial consistency
    Ye, Chuyang
    Prince, Jerry L.
    MEDICAL IMAGE ANALYSIS, 2018, 44 : 41 - 53
  • [7] DICTIONARY-BASED BACKGROUND SIGNAL ESTIMATION FOR MAGNETIC PARTICLE IMAGING
    Knopp, Tobias
    Grosser, Mirco
    Graeser, Matthias
    Gerkman, Timo
    Moeddel, Martin
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1540 - 1543
  • [8] Dictionary-based estimation of spectra for wide-gamut color imaging
    Murakami, Yuri
    Yamaguchi, Masahiro
    Ohyama, Nagaaki
    COLOR RESEARCH AND APPLICATION, 2013, 38 (02): : 120 - 129
  • [9] Offline dictionary-based compression
    Larsson, NJ
    Moffat, A
    DCC '99 - DATA COMPRESSION CONFERENCE, PROCEEDINGS, 1999, : 296 - 305
  • [10] DICTIONARY-BASED FUSION OF CONTACT AND ACOUSTIC MICROPHONES FOR WIND NOISE REDUCTION
    Tammen, Marvin
    Li, Xilin
    Doclo, Simon
    Theverapperuma, Lalin
    2022 INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC 2022), 2022,