Numerical simulation for time-fractional diffusion-wave equations with time delay

被引:0
|
作者
Yaoyao Zhang
Zhibo Wang
机构
[1] Guangdong University of Technology,School of Mathematics and Statistics
关键词
Time-fractional diffusion-wave equation with delay; 1 difference method; Stability and convergence; Energy method; 65M06; 65M12; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, compact finite difference schemes with (3-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3-\alpha )$$\end{document}-th order accuracy in time and fourth order accuracy in space based on the L1 method are constructed for time-fractional diffusion-wave equations with time delay, where α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document} is the fractional order. When solving the two dimensional situation, we adopt the alternating direction implicit (ADI) method to improve the computing efficiency. The convergence and stability of the difference schemes are proved based on some crucial skills. In the end, some numerical examples demonstrate our theoretical statement.
引用
收藏
页码:137 / 157
页数:20
相关论文
共 50 条
  • [11] On numerical solution of the time-fractional diffusion-wave equation with the fictitious time integration method
    M. S. Hashemi
    Mustafa Inc
    M. Parto-Haghighi
    Mustafa Bayram
    [J]. The European Physical Journal Plus, 134
  • [12] On numerical solution of the time-fractional diffusion-wave equation with the fictitious time integration method
    Hashemi, M. S.
    Inc, Mustafa
    Parto-Haghighi, M.
    Bayram, Mustafa
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (10):
  • [13] An artificial neural network approach for a class of time-fractional diffusion and diffusion-wave equations
    Ye, Yinlin
    Fan, Hongtao
    Li, Yajing
    Huang, Ao
    He, Weiheng
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (03) : 1083 - 1104
  • [14] Subordination approach to multi-term time-fractional diffusion-wave equations
    Bazhlekova, Emilia
    Bazhlekov, Ivan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 179 - 192
  • [15] Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions
    M. R. Hooshmandasl
    M. H. Heydari
    C. Cattani
    [J]. The European Physical Journal Plus, 131
  • [16] Numerical solution of distributed-order time-fractional diffusion-wave equations using Laplace transforms
    Engstrom, Christian
    Giani, Stefano
    Grubisic, Luka
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 425
  • [17] Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions
    Hooshmandasl, M. R.
    Heydari, M. H.
    Cattani, C.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08):
  • [18] Numerical method for fractional diffusion-wave equations with functional delay
    Pimenov, V. G.
    Tashirova, E. E.
    [J]. IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2021, 57 : 156 - 169
  • [19] Cauchy and Signaling Problems for the Time-Fractional Diffusion-Wave Equation
    Luchko, Yuri
    Mainardi, Francesco
    [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2014, 136 (05):
  • [20] Solutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates
    Povstenko, Y. Z.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2011,