Numerical simulation for time-fractional diffusion-wave equations with time delay

被引:0
|
作者
Yaoyao Zhang
Zhibo Wang
机构
[1] Guangdong University of Technology,School of Mathematics and Statistics
来源
Journal of Applied Mathematics and Computing | 2023年 / 69卷
关键词
Time-fractional diffusion-wave equation with delay; 1 difference method; Stability and convergence; Energy method; 65M06; 65M12; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, compact finite difference schemes with (3-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3-\alpha )$$\end{document}-th order accuracy in time and fourth order accuracy in space based on the L1 method are constructed for time-fractional diffusion-wave equations with time delay, where α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document} is the fractional order. When solving the two dimensional situation, we adopt the alternating direction implicit (ADI) method to improve the computing efficiency. The convergence and stability of the difference schemes are proved based on some crucial skills. In the end, some numerical examples demonstrate our theoretical statement.
引用
收藏
页码:137 / 157
页数:20
相关论文
共 50 条
  • [31] Dirac's Method Applied to the Time-Fractional Diffusion-Wave Equation
    Ferreira, M.
    Vieira, N.
    Rodrigues, M. M.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [32] Convolution quadrature time discretization of fractional diffusion-wave equations
    Cuesta, E
    Lubich, C
    Palencia, C
    MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 673 - 696
  • [33] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Li, Meng
    Huang, Chengming
    Ming, Wanyuan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2309 - 2334
  • [34] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Meng Li
    Chengming Huang
    Wanyuan Ming
    Computational and Applied Mathematics, 2018, 37 : 2309 - 2334
  • [35] A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an RBF-based meshless method
    Bhardwaj, Akanksha
    Kumar, Alpesh
    ENGINEERING WITH COMPUTERS, 2022, 38 (02) : 1883 - 1903
  • [36] Fractional in Time Diffusion-Wave Equation and its Numerical Approximation
    Delic, Aleksandra
    FILOMAT, 2016, 30 (05) : 1375 - 1385
  • [37] A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an RBF-based meshless method
    Akanksha Bhardwaj
    Alpesh Kumar
    Engineering with Computers, 2022, 38 : 1883 - 1903
  • [38] Identification of Source Term for the Time-Fractional Diffusion-Wave Equation by Fractional Tikhonov Method
    Le Dinh Long
    Nguyen Hoang Luc
    Zhou, Yong
    Can Nguyen
    MATHEMATICS, 2019, 7 (10)
  • [39] Application of general Lagrange scaling functions for evaluating the approximate solution time-fractional diffusion-wave equations
    Sabermahani, Sedigheh
    Ordokhani, Yadollah
    Agarwal, Praveen
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2025, 13 (02): : 450 - 465
  • [40] Stability and asymptotics for fractional delay diffusion-wave equations
    Yao, Zichen
    Yang, Zhanwen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 15208 - 15225