Numerical solution of distributed-order time-fractional diffusion-wave equations using Laplace transforms

被引:1
|
作者
Engstrom, Christian [1 ]
Giani, Stefano [2 ]
Grubisic, Luka [3 ]
机构
[1] Linnaeus Univ, Dept Math, S-35195 Vaxjo, Sweden
[2] Univ Durham, Dept Engn, South Rd, Durham DH1 3LE, England
[3] Univ Zagreb, Fac Sci, Dept Math, Bijenicka 30, Zagreb 10000, Croatia
基金
瑞典研究理事会;
关键词
Numerical inverse Laplace transform; Fractional diffusion-wave equations; Numerical range; Resolvent estimates;
D O I
10.1016/j.cam.2022.115035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the numerical inverse Laplace transform for distributed order time-fractional equations, where a discontinuous Galerkin scheme is used to discretize the problem in space. The success of Talbot's approach for the computation of the inverse Laplace transform depends critically on the problem's spectral properties and we present a method to numerically enclose the spectrum and compute resolvent estimates independent of the problem size. The new results are applied to time-fractional wave and diffusion-wave equations of distributed order.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Distributed-order time-fractional wave equations
    Frederik Broucke
    Ljubica Oparnica
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [2] Distributed-order time-fractional wave equations
    Broucke, Frederik
    Oparnica, Ljubica
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [3] Local discontinuous Galerkin method for distributed-order time-fractional diffusion-wave equation: Application of Laplace transform
    Mohammadi-Firouzjaei, Hadi
    Adibi, Hojatollah
    Dehghan, Mehdi
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4923 - 4937
  • [4] An improved numerical technique for distributed-order time-fractional diffusion equations
    Dehestani, Haniye
    Ordokhani, Yadollah
    Razzaghi, Mohsen
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) : 2490 - 2510
  • [5] Chelyshkov polynomials method for distributed-order time fractional nonlinear diffusion-wave equations
    Heydari, M. H.
    Rashid, S.
    Chu, Yu-Ming
    [J]. RESULTS IN PHYSICS, 2023, 47
  • [6] Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains
    Ye, H.
    Liu, F.
    Anh, V.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 652 - 660
  • [7] Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions
    M. R. Hooshmandasl
    M. H. Heydari
    C. Cattani
    [J]. The European Physical Journal Plus, 131
  • [8] Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions
    Hooshmandasl, M. R.
    Heydari, M. H.
    Cattani, C.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08):
  • [9] Numerical simulation for time-fractional diffusion-wave equations with time delay
    Yaoyao Zhang
    Zhibo Wang
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 137 - 157
  • [10] Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density
    Gorenflo, Rudolf
    Luchko, Yuri
    Stojanovic, Mirjana
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (02) : 297 - 316