Numerical simulation for time-fractional diffusion-wave equations with time delay

被引:0
|
作者
Yaoyao Zhang
Zhibo Wang
机构
[1] Guangdong University of Technology,School of Mathematics and Statistics
关键词
Time-fractional diffusion-wave equation with delay; 1 difference method; Stability and convergence; Energy method; 65M06; 65M12; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, compact finite difference schemes with (3-α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3-\alpha )$$\end{document}-th order accuracy in time and fourth order accuracy in space based on the L1 method are constructed for time-fractional diffusion-wave equations with time delay, where α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document} is the fractional order. When solving the two dimensional situation, we adopt the alternating direction implicit (ADI) method to improve the computing efficiency. The convergence and stability of the difference schemes are proved based on some crucial skills. In the end, some numerical examples demonstrate our theoretical statement.
引用
收藏
页码:137 / 157
页数:20
相关论文
共 50 条