Hydrogen production by the thermocatalytic decomposition of methane in a fluidized bed reactor

被引:0
|
作者
Hyun Tae Jang
Wang Seog Cha
机构
[1] Dept. of Chemical Engineering,
[2] Hanseo University,undefined
[3] Dept. of Civil and Environ. Eng.,undefined
[4] Kunsan Nat’l University,undefined
来源
关键词
Hydrogen Production; Methane Conversion; Hydrogen Yield; Steam Reform; Catalytic Pyrolysis;
D O I
暂无
中图分类号
学科分类号
摘要
CO2-free production of hydrogen via thermocatalytic decomposition of methane in a fluidized bed reactor (FBR) was studied. The technical approach is based on a single-step decomposition of methane over carbon catalyst in air/water vapor free environment. The factors affecting Fe catalyst (Iron powder activity in methane decomposition reactions were examined. Carbon species produced in the process were characterized by SEM methods. The fluidization quality in a gas-fluidized bed of Fe (Iron powder) and Fe/Al2O3 catalyst was determined by the analysis of pressure fluctuation properties, and the results were confirmed with characteristics of methane decomposition. The effect of parameters on the H2 yield was examined. Fibrous carbon formed over Fe catalyst surface. The hydrogen yield increased with increasing reactor temperature, and decreased with increasing superficial velocity of methane inlet stream. The conversion rate of methane is maintained by attrition of produced carbon on Fe catalyst surface in a FBR.
引用
收藏
页码:374 / 377
页数:3
相关论文
共 50 条
  • [21] Recent Progress in the Catalytic Decomposition of Methane in a Fluidized Bed for Hydrogen and Carbon Material Production
    Bae, Keon
    Go, Kang Seok
    Kim, Woohyun
    Lee, Doyeon
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2023, 61 (02): : 175 - 188
  • [22] An overview of production of hydrogen and carbon nanomaterials via thermocatalytic decomposition of methane
    Hadian, Morteza
    Buist, Kay
    Kuipers, Hans
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2023, 42
  • [23] Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane - A review
    Ashik, U. P. M.
    Daud, W. M. A. Wan
    Abbas, Hazzim F.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 44 : 221 - 256
  • [24] Hydrogen and carbon produced by fluidized bed catalytic methane decomposition
    Yang, Miao
    Baeyens, Jan
    Li, Shuo
    Zhang, Huili
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 204 : 67 - 80
  • [25] Decomposition of hydrogen peroxide in a catalytic fluidized-bed reactor
    Chou, SS
    Huang, CP
    APPLIED CATALYSIS A-GENERAL, 1999, 185 (02) : 237 - 245
  • [26] Phenomenological Modeling of a Fluidized-Bed Reactor for Catalytic Decomposition of Methane
    Muharam, Yuswan
    Hendrik
    ADVANCED SCIENCE LETTERS, 2017, 23 (06) : 5605 - 5608
  • [27] Optimization of methane catalytic decomposition in a fluidized bed reactor: A computational approach
    Tong, Sirui
    Miao, Bin
    Zhang, Weike
    Zhang, Lan
    Chan, Siew Hwa
    ENERGY CONVERSION AND MANAGEMENT, 2023, 297
  • [28] Hydrogen production from two-step steam methane reforming in a fluidized bed reactor
    Go, Kang Seok
    Son, Sung Real
    Kim, Sang Done
    Kang, Kyoung Soo
    Park, Chu Sik
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (03) : 1301 - 1309
  • [29] Catalyst development for thermocatalytic decomposition of methane to hydrogen
    Konieczny, A.
    Mondal, K.
    Wiltowski, T.
    Dydo, P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (01) : 264 - 272
  • [30] Methane aromatization in fluidized bed reactor
    Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    Huagong Xuebao, 2006, 8 (1918-1922):