Hydrogen production by the thermocatalytic decomposition of methane in a fluidized bed reactor

被引:0
|
作者
Hyun Tae Jang
Wang Seog Cha
机构
[1] Dept. of Chemical Engineering,
[2] Hanseo University,undefined
[3] Dept. of Civil and Environ. Eng.,undefined
[4] Kunsan Nat’l University,undefined
来源
关键词
Hydrogen Production; Methane Conversion; Hydrogen Yield; Steam Reform; Catalytic Pyrolysis;
D O I
暂无
中图分类号
学科分类号
摘要
CO2-free production of hydrogen via thermocatalytic decomposition of methane in a fluidized bed reactor (FBR) was studied. The technical approach is based on a single-step decomposition of methane over carbon catalyst in air/water vapor free environment. The factors affecting Fe catalyst (Iron powder activity in methane decomposition reactions were examined. Carbon species produced in the process were characterized by SEM methods. The fluidization quality in a gas-fluidized bed of Fe (Iron powder) and Fe/Al2O3 catalyst was determined by the analysis of pressure fluctuation properties, and the results were confirmed with characteristics of methane decomposition. The effect of parameters on the H2 yield was examined. Fibrous carbon formed over Fe catalyst surface. The hydrogen yield increased with increasing reactor temperature, and decreased with increasing superficial velocity of methane inlet stream. The conversion rate of methane is maintained by attrition of produced carbon on Fe catalyst surface in a FBR.
引用
收藏
页码:374 / 377
页数:3
相关论文
共 50 条
  • [31] Hydrogen Production from Methane Thermal Pyrolysis in a Microwave Heating-Assisted Fluidized Bed Reactor
    Hussain, Abdelrahman I.
    Shabanian, Jaber
    Latifi, Mohammad
    Chaouki, Jamal
    Energy and Fuels, 2024, 38 (21): : 21617 - 21632
  • [32] Stable hydrogen production by methane steam reforming in a two zone fluidized bed reactor: Experimental assessment
    Perez-Moreno, L.
    Soler, J.
    Herguido, J.
    Menendez, M.
    JOURNAL OF POWER SOURCES, 2013, 243 : 233 - 241
  • [33] Impact of reactor materials on methane decomposition for hydrogen production
    Abbas, Hazzim F.
    Ashik, U. P. M.
    Mohammed, Salam A.
    Daud, Wan Mohd Ashri Wan
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2021, 174 : 127 - 136
  • [34] Blue hydrogen and carbon nanotube production via direct catalytic decomposition of methane in fluidized bed reactor: Capture and extraction of carbon in the form of CNTs
    Parmar, Kaushal R.
    Pant, K. K.
    Roy, Shantanu
    ENERGY CONVERSION AND MANAGEMENT, 2021, 232
  • [35] Hydrogen production via thermocatalytic decomposition of methane using carbon-based catalysts
    Harun, Khalida
    Adhikari, Sushil
    Jahromi, Hossein
    RSC ADVANCES, 2020, 10 (67) : 40882 - 40893
  • [36] Modeling of a fluidized bed membrane reactor for the steam reforming of methane: Advantages of oxygen addition for favorable hydrogen production
    Rakib, MA
    Alhumaizi, KI
    ENERGY & FUELS, 2005, 19 (05) : 2129 - 2139
  • [37] OXIDATION OF METHANE TO FORMALDEHYDE IN A FLUIDIZED BED REACTOR
    MCCONKEY, BH
    WILKINSON, PR
    INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1967, 6 (04): : 436 - +
  • [38] Hydrogen production by semicoke gasification with a supercritical water fluidized bed reactor
    Cheng, Zening
    Jin, Hui
    Liu, Shanke
    Guo, Liejin
    Xu, Paling
    Su, Di
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (36) : 16055 - 16063
  • [39] Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor
    Jin, Hui
    Lu, Youjun
    Liao, Bo
    Guo, Liejin
    Zhang, Ximin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (13) : 7151 - 7160
  • [40] Kinetics for hydrogen production by methanol steam reforming in fluidized bed reactor
    Fuxiang Zhang
    Yingshuang Shi
    Lijun Yang
    Xiaoze Du
    Science Bulletin, 2016, 61 (05) : 401 - 405