An overview of production of hydrogen and carbon nanomaterials via thermocatalytic decomposition of methane

被引:3
|
作者
Hadian, Morteza [1 ]
Buist, Kay [1 ]
Kuipers, Hans [1 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Multiphase Reactors Grp, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
COX-FREE HYDROGEN; FLUIDIZED-BED; THERMAL-DECOMPOSITION; METAL-CATALYSTS; KINETIC-MODEL; MOLTEN METALS; PYROLYSIS; NANOTUBES; REACTOR;
D O I
10.1016/j.coche.2023.100968
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The ever-increasing global demand for energy and functional materials, coupled with the growing threat of global warming, necessitates the development of new technologies for the largescale production of green energy carriers and materials. ThermoCatalytic Decomposition (TCD) of methane is an environmentally and economically favorable approach to produce hydrogen and valuable carbon nanomaterials simultaneously, without direct greenhouse gas emissions. The chemical kinetics of TCD can be captured by considering the maximum reaction rate and deactivation factor. However, additional studies are required to obtain a deeper understanding of the deactivation mechanisms that limit catalyst performance over time. Moreover, the development of sustainable catalysts that align with the desired application of the carbon product is essential. In order to advance the development of TCD reactors and processes, further research is urgently needed. The challenges that need to be addressed include the impact of catalyst particle growth on the reaction and reactor performance. Fluidized bed reactors (FBRs) are considered the most viable units for TCD, but require comprehensive experimental and modeling studies to assess and overcome the design and operational challenges. Numerical modeling is crucial for designing, optimizing, and evaluating TCD reactors and processes. Coupled Computational Fluid Dynamics-Discrete Element Method models with intraparticle models such as MultiGrain Model, can provide a more representation view of the complex multiscale phenomena of TCD in FBRs, enabling researchers and engineers to explore effectively different reactor concepts and designs.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Hydrogen Production by Thermocatalytic Methane Decomposition
    Wang, Hong Yan
    Lua, Aik Chong
    HEAT TRANSFER ENGINEERING, 2013, 34 (11-12) : 896 - 903
  • [2] Hydrogen production via thermocatalytic decomposition of methane using carbon-based catalysts
    Harun, Khalida
    Adhikari, Sushil
    Jahromi, Hossein
    RSC ADVANCES, 2020, 10 (67) : 40882 - 40893
  • [3] Influence of reactor material and activated carbon on the thermocatalytic decomposition of methane for hydrogen production
    Abbas, Hazzim F.
    Daud, W. M. A. Wan
    APPLIED CATALYSIS A-GENERAL, 2010, 388 (1-2) : 232 - 239
  • [4] Progress of methane catalytic decomposition for hydrogen and carbon nanomaterials production
    Wang, Di (930524867@qq.com); Cui, Yanbin (ybcui@ipe.ac.cn), 2018, Chemical Industry Press Co., Ltd. (37):
  • [5] Natural Fe-based catalysts for the production of hydrogen and carbon nanomaterials via methane decomposition
    Silva, Juliana Alves
    Oliveira Santos, Joao Batista
    Torres, Daniel
    Pinilla, Jose Luis
    Suelves, Isabel
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (71) : 35137 - 35148
  • [6] Hydrogen production by the thermocatalytic decomposition of methane in a fluidized bed reactor
    Jang, Hyun Tae
    Cha, Wang Seog
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2007, 24 (02) : 374 - 377
  • [7] Thermocatalytic Hydrogen Production Through Decomposition of Methane-A Review
    Naikoo, Gowhar A.
    Arshad, Fareeha
    Hassan, Israr U.
    Tabook, Musallam A.
    Pedram, Mona Z.
    Mustaqeem, Mujahid
    Tabassum, Hassina
    Ahmed, Waqar
    Rezakazemi, Mashallah
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [8] Hydrogen Production by Thermocatalytic Decomposition of Methane: Modern Achievements (A Review)
    Kudinov, I. V.
    Kosareva, E. A.
    Dolgikh, V. D.
    Vinogradov, N. A.
    Pimenov, A. A.
    PETROLEUM CHEMISTRY, 2025, 65 (01) : 10 - 34
  • [9] Hydrogen production by the thermocatalytic decomposition of methane in a fluidized bed reactor
    Hyun Tae Jang
    Wang Seog Cha
    Korean Journal of Chemical Engineering, 2007, 24 : 374 - 377
  • [10] Production of hydrogen and carbon nanofiber via methane decomposition
    Zhang, Zhi
    Tang, Tao
    Lu, Guangda
    Qin, Cheng
    Huang, Huogen
    Zheng, Shaotao
    World Academy of Science, Engineering and Technology, 2010, 65 : 1157 - 1160