Scattering for the non-radial inhomogenous biharmonic NLS equation

被引:0
|
作者
Luccas Campos
Carlos M. Guzmán
机构
[1] State University of Campinas (UNICAMP),IMECC
[2] Fluminense Federal University (UFF),Department of Mathematics
关键词
35A01; 35QA55; 35P25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the focusing inhomogeneous biharmonic nonlinear Schrödinger equation in H2(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2(\mathbb {R}^N)$$\end{document}, iut+Δ2u-|x|-b|u|αu=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} iu_t + \Delta ^2 u - |x|^{-b}|u|^{\alpha }u=0, \end{aligned}$$\end{document}when b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b > 0$$\end{document} and N≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 5$$\end{document}. We first obtain a small data global result in H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document}, which, in the five-dimensional case, improves a previous result from Pastor and the second author. In the sequel, we show the main result, scattering below the mass-energy threshold in the intercritical case, that is, 8-2bN<α<8-2bN-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{8-2b}{N}< \alpha <\frac{8-2b}{N-4}$$\end{document}, without assuming radiality of the initial data. The proof combines the decay of the nonlinearity with Virial-Morawetz-type estimates to avoid the radial assumption, allowing for a much simpler proof than the Kenig-Merle roadmap.
引用
收藏
相关论文
共 50 条
  • [41] Infinitely many non-radial solutions for the polyharmonic Henon equation with a critical exponent
    Guo, Yuxia
    Li, Bo
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2017, 147 (02) : 371 - 396
  • [42] Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrodinger Equations
    Saanouni, Tarek
    Feng, Binhua
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [43] Non-radial solutions for higher order Hénon-type equation with critical exponent
    Yuxia Guo
    Yichen hu
    Dewei Li
    Nonlinear Differential Equations and Applications NoDEA, 2023, 30
  • [44] Bridging radial and non-radial measures of efficiency in DEA
    Avkiran, Necmi Kemal
    Tone, Kaoru
    Tsutsui, Miki
    ANNALS OF OPERATIONS RESEARCH, 2008, 164 (01) : 127 - 138
  • [45] Bridging radial and non-radial measures of efficiency in DEA
    Necmi Kemal Avkiran
    Kaoru Tone
    Miki Tsutsui
    Annals of Operations Research, 2008, 164 : 127 - 138
  • [46] Radial solutions of a biharmonic equation with vanishing or singular radial potentials
    Badiale, Marino
    Greco, Stefano
    Rolando, Sergio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 185 : 97 - 122
  • [47] SOBOLEV-LORENTZ SPACES WITH AN APPLICATION TO THE INHOMOGENEOUS BIHARMONIC NLS EQUATION
    An, JinMyong
    Kim, JinMyong
    Ryu, PyongJo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (08): : 3326 - 3345
  • [48] Coupling of radial and non-radial oscillations of neutron stars
    Passamonti, A
    Bruni, M
    Gualtieri, L
    Sopuerta, CR
    Electromagnetic Spectrum of Neutron Stars, 2005, 210 : 83 - 86
  • [49] On the compactness of the non-radial Sobolev space
    Machihara, Shuji
    Sano, Megumi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 520 (01)
  • [50] Non-radial motion of eruptive filaments
    Filippov, BP
    Gopalswamy, N
    Lozhechkin, AV
    SOLAR PHYSICS, 2001, 203 (01) : 119 - 130