Scattering for the non-radial inhomogenous biharmonic NLS equation

被引:0
|
作者
Luccas Campos
Carlos M. Guzmán
机构
[1] State University of Campinas (UNICAMP),IMECC
[2] Fluminense Federal University (UFF),Department of Mathematics
关键词
35A01; 35QA55; 35P25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the focusing inhomogeneous biharmonic nonlinear Schrödinger equation in H2(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2(\mathbb {R}^N)$$\end{document}, iut+Δ2u-|x|-b|u|αu=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} iu_t + \Delta ^2 u - |x|^{-b}|u|^{\alpha }u=0, \end{aligned}$$\end{document}when b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b > 0$$\end{document} and N≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 5$$\end{document}. We first obtain a small data global result in H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document}, which, in the five-dimensional case, improves a previous result from Pastor and the second author. In the sequel, we show the main result, scattering below the mass-energy threshold in the intercritical case, that is, 8-2bN<α<8-2bN-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{8-2b}{N}< \alpha <\frac{8-2b}{N-4}$$\end{document}, without assuming radiality of the initial data. The proof combines the decay of the nonlinearity with Virial-Morawetz-type estimates to avoid the radial assumption, allowing for a much simpler proof than the Kenig-Merle roadmap.
引用
收藏
相关论文
共 50 条