Scattering for the non-radial inhomogenous biharmonic NLS equation

被引:0
|
作者
Luccas Campos
Carlos M. Guzmán
机构
[1] State University of Campinas (UNICAMP),IMECC
[2] Fluminense Federal University (UFF),Department of Mathematics
关键词
35A01; 35QA55; 35P25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the focusing inhomogeneous biharmonic nonlinear Schrödinger equation in H2(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2(\mathbb {R}^N)$$\end{document}, iut+Δ2u-|x|-b|u|αu=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} iu_t + \Delta ^2 u - |x|^{-b}|u|^{\alpha }u=0, \end{aligned}$$\end{document}when b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b > 0$$\end{document} and N≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 5$$\end{document}. We first obtain a small data global result in H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document}, which, in the five-dimensional case, improves a previous result from Pastor and the second author. In the sequel, we show the main result, scattering below the mass-energy threshold in the intercritical case, that is, 8-2bN<α<8-2bN-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{8-2b}{N}< \alpha <\frac{8-2b}{N-4}$$\end{document}, without assuming radiality of the initial data. The proof combines the decay of the nonlinearity with Virial-Morawetz-type estimates to avoid the radial assumption, allowing for a much simpler proof than the Kenig-Merle roadmap.
引用
收藏
相关论文
共 50 条
  • [31] Mapping the non-radial pulsations
    Berdyugina, SV
    Korhonen, H
    Schrijvers, C
    Telting, JH
    BE PHENOMENON IN EARLY-TYPE STARS, PROCEEDINGS, 2000, 175 : 268 - 271
  • [32] Homotheticity and non-radial changes
    Chambers, RG
    Mitchell, T
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2001, 15 (01) : 31 - 39
  • [33] Block-radial symmetry breaking for ground states of biharmonic NLS
    Rainer Mandel
    Diogo Oliveira e Silva
    Calculus of Variations and Partial Differential Equations, 2024, 63
  • [34] THE EFFECTS OF NONLINEARITIES ON RADIAL AND NON-RADIAL OSCILLATIONS
    BUCHLER, JR
    REGEV, O
    ASTRONOMY & ASTROPHYSICS, 1983, 123 (02) : 331 - 342
  • [35] Homotheticity and Non-Radial Changes
    Robert G. Chambers
    Thomas Mitchell
    Journal of Productivity Analysis, 2001, 15 : 31 - 39
  • [36] Block-radial symmetry breaking for ground states of biharmonic NLS
    Mandel, Rainer
    Silva, Diogo Oliveira e
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (02)
  • [37] Non-radial pulsations in be stars
    Briot, D
    STELLAR STRUCTURE AND HABITABLE PLANET FINDING, 2004, 538 : 289 - 291
  • [38] Positive solutions to a non-radial supercritical Klein-Cordon-type equation
    Lorca, Sebastian
    Montenegro, Marcelo
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2006, 49 : 383 - 389
  • [39] NON-RADIAL NORMALIZED SOLUTIONS FOR A NONLINEAR SCHRO spacing diaeresis DINGER EQUATION
    Tong, Zhi-Juan
    Chen, Jianqing
    Wang, Zhi-Qiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (19) : 1 - 14
  • [40] Non-radial solutions with group invariance for the sublinear Emden-Fowler equation
    Kajikiya, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (06) : 3759 - 3770