Sharp Threshold of Global Existence and Instability of Standing Wave for a Davey-Stewartson System

被引:0
|
作者
Zaihui Gan
Jian Zhang
机构
[1] Sichuan Normal University,College of Mathematics and Software Science
[2] The Chinese University of Hong Kong,The Institute of Mathematical Sciences
来源
关键词
Cauchy Problem; Standing Wave; Global Existence; Water Wave; Singular Integral Operator;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the sharp threshold of blowup and global existence of the solution as well as the strong instability of standing wave \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi(t,x) = e^{i\omega t} u(x)$$\end{document} for the system:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\phi_{t}+\Delta \phi+a|\phi|^{p-1}\phi+b E_{1}(|\phi|^{2})\phi\,=\,0,\quad t\,\geq 0,\quad x\in {\bf R}^{N}, \quad \quad \quad ({\rm DS})$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a > 0, b > 0, 1 < p < \frac{N+2}{(N-2)^{+}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\,\in\,\{2,3\}$$\end{document}. Firstly, by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow, we derive a sharp threshold for global existence and blowup of the solution to the Cauchy problem for (DS) provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{4}{N}\,\leq p\, < \frac{N+2}{(N-2)^{+}}$$\end{document} . Secondly, by using the scaling argument, we show how small the initial data are for the global solutions to exist. Finally, we prove the strong instability of the standing waves with finite time blow up for any ω > 0 by combining the former results.
引用
收藏
页码:93 / 125
页数:32
相关论文
共 50 条
  • [41] Global existence and asymptotic behaviour in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system
    Hayashi, N
    Hirata, H
    NONLINEARITY, 1996, 9 (06) : 1387 - 1409
  • [42] Variational approach to the derivation of the Davey-Stewartson system
    Sedletsky, Yu V.
    FLUID DYNAMICS RESEARCH, 2016, 48 (01)
  • [43] Some Results for the Davey-Stewartson System on a Circle
    Chen, Tsai-Jung
    Fang, Yung-Fu
    Hong, Ying-Ji
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING, PTS. 1-5, 2012, 204-208 : 4429 - +
  • [44] Soliton solutions of coupled resonant Davey-Stewartson system and modulation instability analysis
    Onder, Ismail
    Secer, Aydin
    Bayram, Mustafa
    PHYSICA SCRIPTA, 2023, 98 (03)
  • [45] ON THE HAMILTONIAN-FORMALISM FOR THE DAVEY-STEWARTSON SYSTEM
    VILLARROEL, J
    ABLOWITZ, MJ
    INVERSE PROBLEMS, 1991, 7 (03) : 451 - 460
  • [46] Interacting waves of Davey-Stewartson III system
    Tang, Xiao-Yan
    Hao, Xia-Zhi
    Liang, Zu-Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) : 1311 - 1320
  • [47] On the Davey-Stewartson system with singular initial data
    Villamizar-Roa, E. J.
    Perez-Lopez, J. E.
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) : 959 - 964
  • [48] Two remarks on a generalized Davey-Stewartson system
    Eden, A
    Erbay, HA
    Muslu, GM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 979 - 986
  • [49] Variational Approach for a Generalized Davey-Stewartson System
    Xu, Lan
    Zhang, Nan
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [50] Sharp blow-up criteria for the Davey-Stewartson system in R3
    Zhang, Jian
    Zhu, Shihui
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2011, 8 (03) : 239 - 260