Sharp Threshold of Global Existence and Instability of Standing Wave for a Davey-Stewartson System

被引:0
|
作者
Zaihui Gan
Jian Zhang
机构
[1] Sichuan Normal University,College of Mathematics and Software Science
[2] The Chinese University of Hong Kong,The Institute of Mathematical Sciences
来源
关键词
Cauchy Problem; Standing Wave; Global Existence; Water Wave; Singular Integral Operator;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the sharp threshold of blowup and global existence of the solution as well as the strong instability of standing wave \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi(t,x) = e^{i\omega t} u(x)$$\end{document} for the system:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\phi_{t}+\Delta \phi+a|\phi|^{p-1}\phi+b E_{1}(|\phi|^{2})\phi\,=\,0,\quad t\,\geq 0,\quad x\in {\bf R}^{N}, \quad \quad \quad ({\rm DS})$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a > 0, b > 0, 1 < p < \frac{N+2}{(N-2)^{+}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\,\in\,\{2,3\}$$\end{document}. Firstly, by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow, we derive a sharp threshold for global existence and blowup of the solution to the Cauchy problem for (DS) provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{4}{N}\,\leq p\, < \frac{N+2}{(N-2)^{+}}$$\end{document} . Secondly, by using the scaling argument, we show how small the initial data are for the global solutions to exist. Finally, we prove the strong instability of the standing waves with finite time blow up for any ω > 0 by combining the former results.
引用
收藏
页码:93 / 125
页数:32
相关论文
共 50 条
  • [21] Concentrating standing waves for Davey-Stewartson systems
    He, Yi
    Luo, Xiao
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (06) : 1411 - 1450
  • [22] Global Analysis for Rough Solutions to the Davey-Stewartson System
    Yang, Han
    Fan, Xiaoming
    Zhu, Shihui
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [23] Propagating wave patterns for the 'resonant' Davey-Stewartson system
    Tang, X. Y.
    Chow, K. W.
    Rogers, C.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 2707 - 2712
  • [24] Propagating wave patterns and "peakons" of the Davey-Stewartson system
    Chow, KW
    Lou, SY
    CHAOS SOLITONS & FRACTALS, 2006, 27 (02) : 561 - 567
  • [25] GLOBAL ATTRACTOR FOR THE DAVEY-STEWARTSON SYSTEM ON R2
    Goubet, Olivier
    Hussein, Manal
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) : 1555 - 1575
  • [26] MASS CONCENTRATION FOR THE DAVEY-STEWARTSON SYSTEM
    Richards, Geordie
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2011, 24 (3-4) : 261 - 280
  • [27] Global smoothing for the Davey-Stewartson system on R2
    Basakoglu, Engin
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (02)
  • [28] EXISTENCE, STABILITY AND ASYMPTOTIC BEHAVIOUR OF NORMALIZED SOLUTIONS FOR THE DAVEY-STEWARTSON SYSTEM
    He, Zhiqian
    Feng, Binhua
    Liu, Jiayin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, : 5937 - 5966
  • [29] Numerical study of the Davey-Stewartson system
    Besse, C
    Mauser, NJ
    Stimming, HP
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (06): : 1035 - 1054
  • [30] Optical soliton wave solutions to the resonant Davey-Stewartson system
    Aghdaei, Mehdi Fazli
    Manafian, Jalil
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (08)