Sharp Threshold of Global Existence and Instability of Standing Wave for a Davey-Stewartson System

被引:0
|
作者
Zaihui Gan
Jian Zhang
机构
[1] Sichuan Normal University,College of Mathematics and Software Science
[2] The Chinese University of Hong Kong,The Institute of Mathematical Sciences
来源
关键词
Cauchy Problem; Standing Wave; Global Existence; Water Wave; Singular Integral Operator;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the sharp threshold of blowup and global existence of the solution as well as the strong instability of standing wave \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi(t,x) = e^{i\omega t} u(x)$$\end{document} for the system:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\phi_{t}+\Delta \phi+a|\phi|^{p-1}\phi+b E_{1}(|\phi|^{2})\phi\,=\,0,\quad t\,\geq 0,\quad x\in {\bf R}^{N}, \quad \quad \quad ({\rm DS})$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a > 0, b > 0, 1 < p < \frac{N+2}{(N-2)^{+}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\,\in\,\{2,3\}$$\end{document}. Firstly, by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow, we derive a sharp threshold for global existence and blowup of the solution to the Cauchy problem for (DS) provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{4}{N}\,\leq p\, < \frac{N+2}{(N-2)^{+}}$$\end{document} . Secondly, by using the scaling argument, we show how small the initial data are for the global solutions to exist. Finally, we prove the strong instability of the standing waves with finite time blow up for any ω > 0 by combining the former results.
引用
收藏
页码:93 / 125
页数:32
相关论文
共 50 条
  • [31] On the Davey-Stewartson system with competing nonlinearities
    Zhu, Shihui
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
  • [32] Asymptotic Behavior for the Davey-Stewartson System at the Mass-Energy Threshold
    Huang, Juan
    Wang, Yangyang
    Wang, Sheng
    RESULTS IN MATHEMATICS, 2024, 79 (01)
  • [33] Existence of pseudo-conformally invariant solutions to the Davey-Stewartson system
    Cipolatti, R
    Kavian, O
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (01) : 223 - 247
  • [34] The Davey-Stewartson system and the backlund transformations
    Hisakado, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (09) : 3038 - 3043
  • [35] On the integrability of a generalized Davey-Stewartson system
    Eden, A.
    Gurel, T. B.
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 259 : 1 - 7
  • [36] Structural instability of a soliton for the Davey-Stewartson II equation
    R. R. Gadyl’shin
    O. M. Kiselev
    Theoretical and Mathematical Physics, 1999, 118 : 278 - 284
  • [37] Structural instability of a soliton for the Davey-Stewartson II equation
    Gadyl'shin, RR
    Kiselev, OM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 118 (03) : 278 - 284
  • [38] Geometric optics and instability for NLS and Davey-Stewartson models
    Carles, Remi
    Dumas, Eric
    Sparber, Christof
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (06) : 1885 - 1921
  • [39] (2+1) dimensional wave patterns of the Davey-Stewartson system
    Chow, KW
    Mak, CC
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (12) : 3070 - 3074
  • [40] New Solitary-Wave Solutions for Davey-Stewartson II System
    Li, Donglong
    Zhang, Mingjun
    Guo, Yanfeng
    INTERNATIONAL CONFERENCE ON FRONTIERS OF ENERGY, ENVIRONMENTAL MATERIALS AND CIVIL ENGINEERING (FEEMCE 2013), 2013, : 514 - 519