Sharp Threshold of Global Existence and Instability of Standing Wave for a Davey-Stewartson System

被引:0
|
作者
Zaihui Gan
Jian Zhang
机构
[1] Sichuan Normal University,College of Mathematics and Software Science
[2] The Chinese University of Hong Kong,The Institute of Mathematical Sciences
来源
关键词
Cauchy Problem; Standing Wave; Global Existence; Water Wave; Singular Integral Operator;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the sharp threshold of blowup and global existence of the solution as well as the strong instability of standing wave \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi(t,x) = e^{i\omega t} u(x)$$\end{document} for the system:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\phi_{t}+\Delta \phi+a|\phi|^{p-1}\phi+b E_{1}(|\phi|^{2})\phi\,=\,0,\quad t\,\geq 0,\quad x\in {\bf R}^{N}, \quad \quad \quad ({\rm DS})$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a > 0, b > 0, 1 < p < \frac{N+2}{(N-2)^{+}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\,\in\,\{2,3\}$$\end{document}. Firstly, by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow, we derive a sharp threshold for global existence and blowup of the solution to the Cauchy problem for (DS) provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{4}{N}\,\leq p\, < \frac{N+2}{(N-2)^{+}}$$\end{document} . Secondly, by using the scaling argument, we show how small the initial data are for the global solutions to exist. Finally, we prove the strong instability of the standing waves with finite time blow up for any ω > 0 by combining the former results.
引用
收藏
页码:93 / 125
页数:32
相关论文
共 50 条
  • [1] Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system
    Gan, Zaihui
    Zhang, Jian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 283 (01) : 93 - 125
  • [2] Sharp conditions of global existence for the generalized Davey-Stewartson system
    Shu, Ji
    Zhang, Jian
    IMA JOURNAL OF APPLIED MATHEMATICS, 2007, 72 (01) : 36 - 42
  • [3] SHARP THRESHOLD OF GLOBAL EXISTENCE FOR THE GENERALIZED DAVEY-STEWARTSON SYSTEM IN R2
    Gan, Zaihui
    Guo, Boling
    Zhang, Jian
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (03) : 913 - 922
  • [4] ON THE EXISTENCE OF STANDING WAVES FOR A DAVEY-STEWARTSON SYSTEM
    CIPOLATTI, R
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) : 967 - 988
  • [5] Existence of Standing Waves for a Generalized Davey-Stewartson System
    Hu, Xiaoxiao
    Zhou, Xiao-xun
    Wu Tunhua
    Yang, Min-Bo
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [6] SHARP THRESHOLD FOR SCATTERING OF A GENERALIZED DAVEY-STEWARTSON SYSTEM IN THREE DIMENSION
    Lu, Jing
    Wu, Yifei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) : 1641 - 1670
  • [7] Global existence and nonexistence results for a generalized Davey-Stewartson system
    Babaoglu, C
    Eden, A
    Erbay, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (48): : 11531 - 11546
  • [8] Standing waves for a generalized Davey-Stewartson system
    Eden, A.
    Erbay, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (43): : 13435 - 13444
  • [9] Standing waves for a generalized Davey-Stewartson system: Revisited
    Eden, A.
    Topaloglu, I. A.
    APPLIED MATHEMATICS LETTERS, 2008, 21 (04) : 342 - 347
  • [10] The sharp threshold and limiting profile of blow-up solutions for a Davey-Stewartson system
    Li, Xiaoguang
    Zhang, Jian
    Lai, Shaoyong
    Wu, Yonghong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) : 2197 - 2226