The edge fault-tolerant spanning laceability of the enhanced hypercube networks

被引:0
|
作者
Hongwei Qiao
Jixiang Meng
Eminjan Sabir
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
关键词
Enhanced hypercubes; Fault tolerance; Hamiltonian laceable; Hamiltonian; Spanning laceability;
D O I
暂无
中图分类号
学科分类号
摘要
In the design of an interconnection network, one of the most fundamental considerations is the reliability of the network, which can be usually characterized by the fault tolerance of the network. Embedding paths into a network topology is crucial for the network simulation. This paper investigates the problem of embedding spanning disjoint paths in the enhanced hypercube networks with edge fault tolerance. A k-container C(u, v) of a graph G is a set of k-disjoint paths joining u to v. A k-container of G is a k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-container if it contains all the vertices of G. A bipartite graph H with bipartition V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{0}$$\end{document} and V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{1}$$\end{document} is k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable if for any u∈V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in V_{0}$$\end{document} and v∈V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V_{1}$$\end{document} there is a k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-container between u and v. A bipartite graph H is f-edge fault-tolerant k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable if H-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H-F$$\end{document} is k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable for any edge set F of H with |F|≤f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|F|\le f$$\end{document}. It is shown that the n-dimensional bipartite enhanced hypercube network Qn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n,m}$$\end{document} is f-edge fault-tolerant k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable for every f≤n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\le n-1$$\end{document} and f+k≤n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f+k\le n+1$$\end{document}. Moreover, the result is optimal with respect to the degree of Qn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n,m}$$\end{document}, and some experimental examples are provided to verify the theoretical result.
引用
收藏
页码:6070 / 6086
页数:16
相关论文
共 50 条
  • [41] Hybrid fault-tolerant prescribed hyper-hamiltonian laceability of hypercubes
    Yang, Yuxing
    Li, Jing
    THEORETICAL COMPUTER SCIENCE, 2021, 888 : 108 - 116
  • [42] Constructing edge-disjoint spanning trees in several cube-based networks with applications to edge fault-tolerant communication
    Huanwen Zhang
    Yan Wang
    Jianxi Fan
    Yuejuan Han
    Baolei Cheng
    The Journal of Supercomputing, 2024, 80 : 1907 - 1934
  • [43] Vertex-fault-tolerant cycles embedding on enhanced hypercube networks
    Min Liu
    Hong-mei Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 187 - 198
  • [44] Constructing edge-disjoint spanning trees in several cube-based networks with applications to edge fault-tolerant communication
    Zhang, Huanwen
    Wang, Yan
    Fan, Jianxi
    Han, Yuejuan
    Cheng, Baolei
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (02): : 1907 - 1934
  • [45] Vertex-Fault-Tolerant Cycles Embedding on Enhanced Hypercube Networks
    Min LIU
    Hong-mei LIU
    ActaMathematicaeApplicataeSinica, 2016, 32 (01) : 187 - 198
  • [46] VERTEX-FAULT-TOLERANT CYCLES EMBEDDING ON ENHANCED HYPERCUBE NETWORKS
    张艳娟
    刘红美
    刘敏
    ActaMathematicaScientia, 2013, 33 (06) : 1579 - 1588
  • [47] VERTEX-FAULT-TOLERANT CYCLES EMBEDDING ON ENHANCED HYPERCUBE NETWORKS
    Zhang, Yanjuan
    Liu, Hongmei
    Liu, Min
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (06) : 1579 - 1588
  • [48] Vertex-Fault-Tolerant Cycles Embedding on Enhanced Hypercube Networks
    Liu, Min
    Liu, Hong-mei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (01): : 187 - 198
  • [49] Fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees
    Li, Hengzhe
    Yang, Weihua
    Meng, Jixiang
    DISCRETE MATHEMATICS, 2012, 312 (21) : 3087 - 3095
  • [50] AN ADAPTIVE FAULT-TOLERANT ROUTING ALGORITHM FOR HYPERCUBE MULTICOMPUTERS
    LAN, Y
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1995, 6 (11) : 1147 - 1152