The edge fault-tolerant spanning laceability of the enhanced hypercube networks

被引:0
|
作者
Hongwei Qiao
Jixiang Meng
Eminjan Sabir
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
关键词
Enhanced hypercubes; Fault tolerance; Hamiltonian laceable; Hamiltonian; Spanning laceability;
D O I
暂无
中图分类号
学科分类号
摘要
In the design of an interconnection network, one of the most fundamental considerations is the reliability of the network, which can be usually characterized by the fault tolerance of the network. Embedding paths into a network topology is crucial for the network simulation. This paper investigates the problem of embedding spanning disjoint paths in the enhanced hypercube networks with edge fault tolerance. A k-container C(u, v) of a graph G is a set of k-disjoint paths joining u to v. A k-container of G is a k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-container if it contains all the vertices of G. A bipartite graph H with bipartition V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{0}$$\end{document} and V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{1}$$\end{document} is k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable if for any u∈V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in V_{0}$$\end{document} and v∈V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V_{1}$$\end{document} there is a k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-container between u and v. A bipartite graph H is f-edge fault-tolerant k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable if H-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H-F$$\end{document} is k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable for any edge set F of H with |F|≤f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|F|\le f$$\end{document}. It is shown that the n-dimensional bipartite enhanced hypercube network Qn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n,m}$$\end{document} is f-edge fault-tolerant k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable for every f≤n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\le n-1$$\end{document} and f+k≤n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f+k\le n+1$$\end{document}. Moreover, the result is optimal with respect to the degree of Qn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n,m}$$\end{document}, and some experimental examples are provided to verify the theoretical result.
引用
收藏
页码:6070 / 6086
页数:16
相关论文
共 50 条
  • [31] FAULT-TOLERANT MATRIX OPERATIONS ON HYPERCUBE MULTIPROCESSORS
    ELSTER, AC
    UYAR, MU
    REEVES, AP
    PROCEEDINGS OF THE 1989 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, VOL 3: ALGORITHMS AND APPLICATIONS, 1989, : 169 - 176
  • [32] FAULT-TOLERANT SORTING ALGORITHM ON HYPERCUBE MULTICOMPUTERS
    SHEU, JP
    CHEN, YS
    CHANG, CY
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1992, 16 (02) : 185 - 197
  • [33] Fault-tolerant message routing in the extended hypercube
    Kumar, MJ
    Patnaik, LM
    Nag, B
    JOURNAL OF SYSTEMS ARCHITECTURE, 1998, 44 (9-10) : 691 - 702
  • [34] Large Language Model Enhanced Autonomous Agents for Proactive Fault-Tolerant Edge Networks
    Fang, Honglin
    Zhang, Di
    Tan, Can
    Yu, Peng
    Wang, Ying
    Li, Wenjing
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [35] Fault-Tolerant Embedding of Pairwise Independent Hamiltonian Paths on a Faulty Hypercube with Edge Faults
    Hsieh, Sun-Yuan
    Weng, Yu-Fen
    THEORY OF COMPUTING SYSTEMS, 2009, 45 (02) : 407 - 425
  • [36] Fault-Tolerant Embedding of Pairwise Independent Hamiltonian Paths on a Faulty Hypercube with Edge Faults
    Sun-Yuan Hsieh
    Yu-Fen Weng
    Theory of Computing Systems, 2009, 45 : 407 - 425
  • [37] Adaptive fault-tolerant wormhole routing algorithms for hypercube and mesh interconnection networks
    Shih, JD
    11TH INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM, PROCEEDINGS, 1997, : 333 - 340
  • [38] A fault-tolerant multicast routing algorithm based on cube algebra for hypercube networks
    Günes, S
    Yilmaz, N
    Allahverdi, N
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2003, 28 (1B) : 95 - 103
  • [39] Fault-Tolerant Hamiltonian Connectivity of Twisted Hypercube-Like Networks THLNs
    Zhang, Huifeng
    Xu, Xirong
    Guo, Jing
    Yang, Yuansheng
    IEEE ACCESS, 2018, 6 : 74081 - 74090
  • [40] Hypercube connected rings: a scalable and fault-tolerant logical topology for optical networks
    Banerjee, S
    Sarkar, D
    COMPUTER COMMUNICATIONS, 2001, 24 (11) : 1060 - 1079