The edge fault-tolerant spanning laceability of the enhanced hypercube networks

被引:0
|
作者
Hongwei Qiao
Jixiang Meng
Eminjan Sabir
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
关键词
Enhanced hypercubes; Fault tolerance; Hamiltonian laceable; Hamiltonian; Spanning laceability;
D O I
暂无
中图分类号
学科分类号
摘要
In the design of an interconnection network, one of the most fundamental considerations is the reliability of the network, which can be usually characterized by the fault tolerance of the network. Embedding paths into a network topology is crucial for the network simulation. This paper investigates the problem of embedding spanning disjoint paths in the enhanced hypercube networks with edge fault tolerance. A k-container C(u, v) of a graph G is a set of k-disjoint paths joining u to v. A k-container of G is a k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-container if it contains all the vertices of G. A bipartite graph H with bipartition V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{0}$$\end{document} and V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{1}$$\end{document} is k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable if for any u∈V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in V_{0}$$\end{document} and v∈V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V_{1}$$\end{document} there is a k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-container between u and v. A bipartite graph H is f-edge fault-tolerant k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable if H-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H-F$$\end{document} is k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable for any edge set F of H with |F|≤f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|F|\le f$$\end{document}. It is shown that the n-dimensional bipartite enhanced hypercube network Qn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n,m}$$\end{document} is f-edge fault-tolerant k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable for every f≤n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\le n-1$$\end{document} and f+k≤n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f+k\le n+1$$\end{document}. Moreover, the result is optimal with respect to the degree of Qn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n,m}$$\end{document}, and some experimental examples are provided to verify the theoretical result.
引用
收藏
页码:6070 / 6086
页数:16
相关论文
共 50 条
  • [21] FAULT-TOLERANT GOSSIPING ON HYPERCUBE MULTICOMPUTERS
    FRAIGNIAUD, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 487 : 463 - 472
  • [22] Distributed recovery block based fault-tolerant routing in hypercube networks
    Khan, GN
    Hura, GS
    Wei, G
    IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 603 - 608
  • [23] A FAULT-TOLERANT COMMUNICATION SCHEME FOR HYPERCUBE COMPUTERS
    LEE, TC
    HAYES, JP
    IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (10) : 1242 - 1256
  • [24] A RECONFIGURABLE MODULAR FAULT-TOLERANT HYPERCUBE ARCHITECTURE
    YANG, CS
    ZU, LP
    WU, YN
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1994, 5 (10) : 1018 - 1032
  • [25] ADAPTIVE FAULT-TOLERANT ROUTING IN HYPERCUBE MULTICOMPUTERS
    CHEN, MS
    SHIN, KG
    IEEE TRANSACTIONS ON COMPUTERS, 1990, 39 (12) : 1406 - 1416
  • [26] Fault-tolerant fixed routing in hypercube generalizations
    Lankinen, A
    Nieminen, J
    Peltola, M
    Ruotsalainen, P
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2002, 33 (07): : 1053 - 1076
  • [27] ADAPTIVE FAULT-TOLERANT MULTICAST IN HYPERCUBE MULTICOMPUTERS
    LAN, YR
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1994, 23 (01) : 80 - 93
  • [28] PERFORMANCE OF FAULT-TOLERANT DIAGNOSTICS IN THE HYPERCUBE SYSTEMS
    GHAFOOR, A
    SOLE, P
    IEEE TRANSACTIONS ON COMPUTERS, 1989, 38 (08) : 1164 - 1172
  • [29] Edge-Version of Fault-Tolerant Resolvability in Networks
    Faheem, Muhammad
    Ahmad, Muhammad
    Zahid, Zohaib
    Javaid, Muhammad
    Ashebo, Mamo Abebe
    IEEE ACCESS, 2025, 13 : 3601 - 3612
  • [30] A fault-tolerant routing strategy in hypercube multicomputers
    Chiu, GM
    Wu, SP
    IEEE TRANSACTIONS ON COMPUTERS, 1996, 45 (02) : 143 - 155