Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images

被引:0
|
作者
Aashish C. Gupta
Guillaume Cazoulat
Mais Al Taie
Sireesha Yedururi
Bastien Rigaud
Austin Castelo
John Wood
Cenji Yu
Caleb O’Connor
Usama Salem
Jessica Albuquerque Marques Silva
Aaron Kyle Jones
Molly McCulloch
Bruno C. Odisio
Eugene J. Koay
Kristy K. Brock
机构
[1] The University of Texas MD Anderson Cancer Center,Department of Imaging Physics
[2] The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences,Abdominal Imaging Department
[3] The University of Texas MD Anderson Cancer Center,Department of Radiation Physics
[4] The University of Texas MD Anderson Cancer Center,Department of Interventional Radiology
[5] The University of Texas MD Anderson Cancer Center,Department of Gastrointestinal Radiation Oncology
[6] The University of Texas MD Anderson Cancer Center,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Manual delineation of liver segments on computed tomography (CT) images for primary/secondary liver cancer (LC) patients is time-intensive and prone to inter/intra-observer variability. Therefore, we developed a deep-learning-based model to auto-contour liver segments and spleen on contrast-enhanced CT (CECT) images. We trained two models using 3d patch-based attention U-Net (MpaU-Net)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{paU}}-{\text{Net}}})$$\end{document} and 3d full resolution of nnU-Net (MnnU-Net)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{nnU}}-{\text{Net}}})$$\end{document} to determine the best architecture (BA)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{BA}})$$\end{document}. BA was used with vessels (MVess)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{Vess}}})$$\end{document} and spleen (Mseg+spleen)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{seg}}+{\text{spleen}}})$$\end{document} to assess the impact on segment contouring. Models were trained, validated, and tested on 160 (CRTTrain\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{C}}}_{{\text{RTTrain}}}$$\end{document}), 40 (CRTVal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{C}}}_{{\text{RTVal}}}$$\end{document}), 33 (CLS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{C}}}_{{\text{LS}}}$$\end{document}), 25 (CCH) and 20 (CPVE) CECT of LC patients. MnnU-Net\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{nnU}}-{\text{Net}}}$$\end{document} outperformed MpaU-Net\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{paU}}-{\text{Net}}}$$\end{document} across all segments with median differences in Dice similarity coefficients (DSC) ranging 0.03–0.05 (p < 0.05). Mseg+spleen\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{seg}}+{\text{spleen}}}$$\end{document}, and MnnU-Net\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{nnU}}-{\text{Net}}}$$\end{document} were not statistically different (p > 0.05), however, both were slightly better than MVess\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{Vess}}}$$\end{document} by DSC up to 0.02. The final model, Mseg+spleen\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{seg}}+{\text{spleen}}}$$\end{document}, showed a mean DSC of 0.89, 0.82, 0.88, 0.87, 0.96, and 0.95 for segments 1, 2, 3, 4, 5–8, and spleen, respectively on entire test sets. Qualitatively, more than 85% of cases showed a Likert score ≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge$$\end{document} 3 on test sets. Our final model provides clinically acceptable contours of liver segments and spleen which are usable in treatment planning.
引用
收藏
相关论文
共 50 条
  • [1] Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images
    Gupta, Aashish C.
    Cazoulat, Guillaume
    Al Taie, Mais
    Yedururi, Sireesha
    Rigaud, Bastien
    Castelo, Austin
    Wood, John
    Yu, Cenji
    O'Connor, Caleb
    Salem, Usama
    Silva, Jessica Albuquerque Marques
    Jones, Aaron Kyle
    McCulloch, Molly
    Odisio, Bruno C.
    Koay, Eugene J.
    Brock, Kristy K.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [2] Evaluation of Deep Learning Based Auto-Contouring of Liver Segments
    Gupta, A.
    Rigaud, B.
    Yedururi, S.
    Kirimli, E.
    Yu, C.
    He, Y.
    Cazoulat, G.
    Oconnor, C.
    Odisio, B.
    Koay, E.
    Brock, K.
    MEDICAL PHYSICS, 2022, 49 (06) : E697 - E698
  • [3] Deep learning based auto-contouring of planning CT scans for rectal cancer
    Bokhorst, L.
    Savenije, M. H. F.
    Intven, M. P. W.
    Van den Berg, C. A. T.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S949 - S949
  • [4] Evaluation of a CT scanner based deep learning auto-contouring solution for lung radiotherapy
    Williams, M.
    Berenato, S.
    Moehler, C.
    Millin, A.
    Wheeler, P.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1317 - S1318
  • [5] Evaluation of a CT scanner based deep learning auto-contouring solution for prostate radiotherapy
    Williams, M.
    Berenato, S.
    Woodley, O.
    Moehler, C.
    Evans, E.
    Millin, A.
    Wheeler, P.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S263 - S264
  • [6] Automated Contouring of Contrast and Non-Contrast CT Liver Images with Fully Convolutional Neural Networks
    Anderson, B. M.
    Lin, E.
    Cardenas, C. E.
    Koay, E. J.
    Odisio, B.
    Brock, K. K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : S55 - S55
  • [7] Investigating intensity augmentation for deep learning contouring on prostate contrast-enhanced CT
    Balfour, D.
    Boukerroui, D.
    McQuinlan, Y.
    Baggs, R.
    Turner, J.
    Battye, M.
    Looney, P.
    van Elmpt, W.
    Dekker, A.
    Gooding, M.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S41 - S43
  • [8] Automated segmentation of colorectal liver metastasis and liver ablation on contrast-enhanced CT images
    Anderson, Brian M.
    Rigaud, Bastien
    Lin, Yuan-Mao
    Jones, A. Kyle
    Kang, HynSeon Christine
    Odisio, Bruno C.
    Brock, Kristy K.
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [9] Automatic Contouring QA Approach Using a Deep-Learning-Based Auto-Contouring System
    Rhee, D.
    Anakwenze, C.
    Rigaud, B.
    Jhingran, A.
    Cardenas, C.
    Zhang, L.
    Prajapati, S.
    Kry, S.
    Brock, K.
    Beadle, B.
    Shaw, W.
    O'reilly, D.
    Parkes, J.
    Burger, H.
    Fakie, N.
    Trauernicht, C.
    Simonds, H.
    Court, L.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [10] Clinical Evaluation of Deep Learning Based Auto-Contouring Software for Prostate Radiotherapy
    Kirk, M.
    Anderson, B.
    Prichard, H.
    Ryan, L.
    Zhang, X.
    Wang, Y.
    MEDICAL PHYSICS, 2021, 48 (06)