Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images

被引:0
|
作者
Aashish C. Gupta
Guillaume Cazoulat
Mais Al Taie
Sireesha Yedururi
Bastien Rigaud
Austin Castelo
John Wood
Cenji Yu
Caleb O’Connor
Usama Salem
Jessica Albuquerque Marques Silva
Aaron Kyle Jones
Molly McCulloch
Bruno C. Odisio
Eugene J. Koay
Kristy K. Brock
机构
[1] The University of Texas MD Anderson Cancer Center,Department of Imaging Physics
[2] The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences,Abdominal Imaging Department
[3] The University of Texas MD Anderson Cancer Center,Department of Radiation Physics
[4] The University of Texas MD Anderson Cancer Center,Department of Interventional Radiology
[5] The University of Texas MD Anderson Cancer Center,Department of Gastrointestinal Radiation Oncology
[6] The University of Texas MD Anderson Cancer Center,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Manual delineation of liver segments on computed tomography (CT) images for primary/secondary liver cancer (LC) patients is time-intensive and prone to inter/intra-observer variability. Therefore, we developed a deep-learning-based model to auto-contour liver segments and spleen on contrast-enhanced CT (CECT) images. We trained two models using 3d patch-based attention U-Net (MpaU-Net)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{paU}}-{\text{Net}}})$$\end{document} and 3d full resolution of nnU-Net (MnnU-Net)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{nnU}}-{\text{Net}}})$$\end{document} to determine the best architecture (BA)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{BA}})$$\end{document}. BA was used with vessels (MVess)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{Vess}}})$$\end{document} and spleen (Mseg+spleen)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{seg}}+{\text{spleen}}})$$\end{document} to assess the impact on segment contouring. Models were trained, validated, and tested on 160 (CRTTrain\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{C}}}_{{\text{RTTrain}}}$$\end{document}), 40 (CRTVal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{C}}}_{{\text{RTVal}}}$$\end{document}), 33 (CLS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{C}}}_{{\text{LS}}}$$\end{document}), 25 (CCH) and 20 (CPVE) CECT of LC patients. MnnU-Net\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{nnU}}-{\text{Net}}}$$\end{document} outperformed MpaU-Net\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{paU}}-{\text{Net}}}$$\end{document} across all segments with median differences in Dice similarity coefficients (DSC) ranging 0.03–0.05 (p < 0.05). Mseg+spleen\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{seg}}+{\text{spleen}}}$$\end{document}, and MnnU-Net\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{nnU}}-{\text{Net}}}$$\end{document} were not statistically different (p > 0.05), however, both were slightly better than MVess\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{Vess}}}$$\end{document} by DSC up to 0.02. The final model, Mseg+spleen\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{seg}}+{\text{spleen}}}$$\end{document}, showed a mean DSC of 0.89, 0.82, 0.88, 0.87, 0.96, and 0.95 for segments 1, 2, 3, 4, 5–8, and spleen, respectively on entire test sets. Qualitatively, more than 85% of cases showed a Likert score ≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge$$\end{document} 3 on test sets. Our final model provides clinically acceptable contours of liver segments and spleen which are usable in treatment planning.
引用
收藏
相关论文
共 50 条
  • [21] Diagnosis of diffuse spleen involvement in haematological malignancies using a spleen-to-liver attenuation ratio on contrast-enhanced CT images
    Reinert, Christian Philipp
    Hinterleitner, Clemens
    Fritz, Jan
    Nikolaou, Konstantin
    Horger, Marius
    EUROPEAN RADIOLOGY, 2019, 29 (01) : 450 - 457
  • [22] Diagnosis of diffuse spleen involvement in haematological malignancies using a spleen-to-liver attenuation ratio on contrast-enhanced CT images
    Christian Philipp Reinert
    Clemens Hinterleitner
    Jan Fritz
    Konstantin Nikolaou
    Marius Horger
    European Radiology, 2019, 29 : 450 - 457
  • [23] Full-Body Deep Learning-Based Automated Contouring of Contrast-Enhanced Murine Organs for Small Animal Precision Irradiation
    Cramer, E. C.
    Dobiasch, S.
    Verginadis, I. I.
    Liu, X.
    Combs, S. E.
    Wiersma, R. D.
    MEDICAL PHYSICS, 2024, 51 (10) : 7787 - 7788
  • [24] Deep learning-based auto-contouring algorithm for tumour tracking using a Linac-MR
    Han, Gawon
    Yee, Don
    Wachowicz, Keith
    Fallone, B. Gino
    Yun, Jihyun
    MEDICAL PHYSICS, 2021, 48 (08) : 4660 - 4660
  • [25] Automatic Aortic Valve Extraction Using Deep Learning with Contrast-Enhanced Cardiac CT Images
    Inomata, Soichiro
    Yoshimura, Takaaki
    Tang, Minghui
    Ichikawa, Shota
    Sugimori, Hiroyuki
    JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE, 2025, 12 (01)
  • [26] Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound
    Wu, Kaizhi
    Chen, Xi
    Ding, Mingyue
    OPTIK, 2014, 125 (15): : 4057 - 4063
  • [27] Liver Steatosis Categorization on Contrast-Enhanced CT Using a Fully Automated Deep Learning Volumetric Segmentation Tool: Evaluation in 1204 Healthy Adults Using Unenhanced CT as a Reference Standard
    Pickhardt, Perry J.
    Blake, Glen M.
    Graffy, Peter M.
    Sandfort, Veit
    Elton, Daniel C.
    Perez, Alberto A.
    Summers, Ronald M.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2021, 217 (02) : 359 - 367
  • [28] Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring for Head and Neck Radiation Therapy
    Ng, Curtise K. C.
    Leung, Vincent W. S.
    Hung, Rico H. M.
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [29] Beyond radiologist-level liver lesion detection on multi-phase contrast-enhanced CT images by deep learning
    Wu, Lei
    Wang, Haishuai
    Chen, Yining
    Zhang, Xiang
    Zhang, Tianyun
    Shen, Ning
    Tao, Guangyu
    Sun, Zhongquan
    Ding, Yuan
    Wang, Weilin
    Bu, Jiajun
    ISCIENCE, 2023, 26 (11)
  • [30] Deep Learning Radiomics Model of Contrast-Enhanced CT for Differentiating the Primary Source of Liver Metastases
    Jia, Wenjing
    Li, Fuyan
    Cui, Yi
    Wang, Yong
    Dai, Zhengjun
    Yan, Qingqing
    Liu, Xinhui
    Li, Yuting
    Chang, Huan
    Zeng, Qingshi
    ACADEMIC RADIOLOGY, 2024, 31 (10) : 4057 - 4067