Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images

被引:0
|
作者
Aashish C. Gupta
Guillaume Cazoulat
Mais Al Taie
Sireesha Yedururi
Bastien Rigaud
Austin Castelo
John Wood
Cenji Yu
Caleb O’Connor
Usama Salem
Jessica Albuquerque Marques Silva
Aaron Kyle Jones
Molly McCulloch
Bruno C. Odisio
Eugene J. Koay
Kristy K. Brock
机构
[1] The University of Texas MD Anderson Cancer Center,Department of Imaging Physics
[2] The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences,Abdominal Imaging Department
[3] The University of Texas MD Anderson Cancer Center,Department of Radiation Physics
[4] The University of Texas MD Anderson Cancer Center,Department of Interventional Radiology
[5] The University of Texas MD Anderson Cancer Center,Department of Gastrointestinal Radiation Oncology
[6] The University of Texas MD Anderson Cancer Center,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Manual delineation of liver segments on computed tomography (CT) images for primary/secondary liver cancer (LC) patients is time-intensive and prone to inter/intra-observer variability. Therefore, we developed a deep-learning-based model to auto-contour liver segments and spleen on contrast-enhanced CT (CECT) images. We trained two models using 3d patch-based attention U-Net (MpaU-Net)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{paU}}-{\text{Net}}})$$\end{document} and 3d full resolution of nnU-Net (MnnU-Net)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{nnU}}-{\text{Net}}})$$\end{document} to determine the best architecture (BA)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{BA}})$$\end{document}. BA was used with vessels (MVess)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{Vess}}})$$\end{document} and spleen (Mseg+spleen)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{seg}}+{\text{spleen}}})$$\end{document} to assess the impact on segment contouring. Models were trained, validated, and tested on 160 (CRTTrain\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{C}}}_{{\text{RTTrain}}}$$\end{document}), 40 (CRTVal\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{C}}}_{{\text{RTVal}}}$$\end{document}), 33 (CLS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{C}}}_{{\text{LS}}}$$\end{document}), 25 (CCH) and 20 (CPVE) CECT of LC patients. MnnU-Net\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{nnU}}-{\text{Net}}}$$\end{document} outperformed MpaU-Net\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{paU}}-{\text{Net}}}$$\end{document} across all segments with median differences in Dice similarity coefficients (DSC) ranging 0.03–0.05 (p < 0.05). Mseg+spleen\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{seg}}+{\text{spleen}}}$$\end{document}, and MnnU-Net\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{nnU}}-{\text{Net}}}$$\end{document} were not statistically different (p > 0.05), however, both were slightly better than MVess\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{Vess}}}$$\end{document} by DSC up to 0.02. The final model, Mseg+spleen\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{M}}}_{{\text{seg}}+{\text{spleen}}}$$\end{document}, showed a mean DSC of 0.89, 0.82, 0.88, 0.87, 0.96, and 0.95 for segments 1, 2, 3, 4, 5–8, and spleen, respectively on entire test sets. Qualitatively, more than 85% of cases showed a Likert score ≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge$$\end{document} 3 on test sets. Our final model provides clinically acceptable contours of liver segments and spleen which are usable in treatment planning.
引用
收藏
相关论文
共 50 条
  • [31] Fully automated registration and warping of contrast-enhanced first-pass perfusion images
    Gallippi, CM
    Kramer, CM
    Hu, YL
    Vido, DA
    Reichek, N
    Rogers, WJ
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2002, 4 (04) : 459 - 469
  • [32] Artificial intelligence with a deep learning network for the quantification and distinction of functional adrenal tumors based on contrast-enhanced CT images
    Alimu, Parehe
    Fang, Chen
    Han, Yingnan
    Dai, Jun
    Xie, Chunmei
    Wang, Jiyong
    Mao, Yongxin
    Chen, Yunmeng
    Yao, Lu
    Lv, Chuanfeng
    Xu, Danfeng
    Xie, Guotong
    Sun, Fukang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (04) : 2675 - 2687
  • [33] Atherosclerotic Plaque Burden on Abdominal CT: Automated Assessment With Deep Learning on Noncontrast and Contrast-enhanced Scans
    Summers, Ronald M.
    Elton, Daniel C.
    Lee, Sungwon
    Zhu, Yingying
    Liu, Jiamin
    Bagheri, Mohammedhadi
    Sandfort, Veit
    Grayson, Peter C.
    Mehta, Nehal N.
    Pinto, Peter A.
    Linehan, W. Marston
    Perez, Alberto A.
    Graffy, Peter M.
    O'Connor, Stacy D.
    Pickhardt, Perry J.
    ACADEMIC RADIOLOGY, 2021, 28 (11) : 1491 - 1499
  • [34] A pipeline for automated deep learning liver segmentation (PADLLS) from contrast enhanced CT exams
    Jayasuriya Senthilvelan
    Neema Jamshidi
    Scientific Reports, 12
  • [35] A pipeline for automated deep learning liver segmentation (PADLLS) from contrast enhanced CT exams
    Senthilvelan, Jayasuriya
    Jamshidi, Neema
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [36] Phase recognition in contrast-enhanced CT scans based on deep learning and random sampling
    Dao, Binh T.
    Nguyen, Thang, V
    Pham, Hieu H.
    Nguyen, Ha Q.
    MEDICAL PHYSICS, 2022, 49 (07) : 4518 - 4528
  • [37] Fully automated tissue classifier for contrast-enhanced CT scans of adult and pediatric patients
    Somasundaram, Elanchezhian
    Deaton, Joanna
    Kaufman, Robert
    Brady, Samuel
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (13):
  • [38] A deep-learning approach for myocardial fibrosis detection in early contrast-enhanced cardiac CT images
    Penso, Marco
    Babbaro, Mario
    Moccia, Sara
    Baggiano, Andrea
    Carerj, Maria Ludovica
    Guglielmo, Marco
    Fusini, Laura
    Mushtaq, Saima
    Andreini, Daniele
    Pepi, Mauro
    Pontone, Gianluca
    Caiani, Enrico G. G.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [39] Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs
    Sun, Changjian
    Guo, Shuxu
    Zhang, Huimao
    Li, Jing
    Chen, Meimei
    Ma, Shuzhi
    Jin, Lanyi
    Liu, Xiaoming
    Li, Xueyan
    Qian, Xiaohua
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2017, 83 : 58 - 66
  • [40] A Comparative Study: Deformable Contour Propagation Vs. Deep Learning-Based Auto-Contouring for Mrgrt
    Sun, S. H.
    Tseng, W. C.
    Liu, C.
    Yan, G.
    MEDICAL PHYSICS, 2024, 51 (10) : 7795 - 7795