Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images

被引:3
|
作者
Gupta, Aashish C. [1 ,2 ]
Cazoulat, Guillaume [1 ]
Al Taie, Mais [1 ]
Yedururi, Sireesha [3 ]
Rigaud, Bastien [1 ]
Castelo, Austin [1 ]
Wood, John [1 ]
Yu, Cenji [2 ,4 ]
O'Connor, Caleb [1 ]
Salem, Usama [3 ]
Silva, Jessica Albuquerque Marques [5 ]
Jones, Aaron Kyle [1 ,2 ]
McCulloch, Molly [1 ]
Odisio, Bruno C. [5 ]
Koay, Eugene J. [2 ,6 ]
Brock, Kristy K. [1 ,2 ,4 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Imaging Phys, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr UTHlth, Grad Sch Biomed Sci, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Abdominal Imaging Dept, Houston, TX USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Radiat Phys, Houston, TX 77030 USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Intervent Radiol, Houston, TX USA
[6] Univ Texas MD Anderson Canc Ctr, Dept Gastrointestinal Radiat Oncol, Houston, TX USA
基金
美国国家卫生研究院;
关键词
RADIATION-THERAPY; ONCOLOGY; SURGERY;
D O I
10.1038/s41598-024-53997-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Manual delineation of liver segments on computed tomography (CT) images for primary/secondary liver cancer (LC) patients is time-intensive and prone to inter/intra-observer variability. Therefore, we developed a deep-learning-based model to auto-contour liver segments and spleen on contrast-enhanced CT (CECT) images. We trained two models using 3d patch-based attention U-Net (MpaU-Net) and 3d full resolution of nnU-Net (MnnU-Net) to determine the best architecture (BA) . BA was used with vessels ( M-Vess) and spleen (Mseg+spleen) to assess the impact on segment contouring. Models were trained, validated, and tested on 160 (C-RTTrain), 40 (C-RTVal), 33 (C-LS), 25 (C-CH) and 20 (C-PVE) CECT of LC patients. MnnU-Net outperformed MpaU-Net across all segments with median differences in Dice similarity coefficients (DSC) ranging 0.03-0.05 (p < 0.05). Mseg+spleen , and MnnU-Net were not statistically different (p > 0.05), however, both were slightly better than M-Vess by DSC up to 0.02. The final model, Mseg+spleen, showed a mean DSC of 0.89, 0.82, 0.88, 0.87, 0.96, and 0.95 for segments 1, 2, 3, 4, 5-8, and spleen, respectively on entire test sets. Qualitatively, more than 85% of cases showed a Likert score >= 3 on test sets. Our final model provides clinically acceptable contours of liver segments and spleen which are usable in treatment planning.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images
    Aashish C. Gupta
    Guillaume Cazoulat
    Mais Al Taie
    Sireesha Yedururi
    Bastien Rigaud
    Austin Castelo
    John Wood
    Cenji Yu
    Caleb O’Connor
    Usama Salem
    Jessica Albuquerque Marques Silva
    Aaron Kyle Jones
    Molly McCulloch
    Bruno C. Odisio
    Eugene J. Koay
    Kristy K. Brock
    Scientific Reports, 14
  • [2] Evaluation of Deep Learning Based Auto-Contouring of Liver Segments
    Gupta, A.
    Rigaud, B.
    Yedururi, S.
    Kirimli, E.
    Yu, C.
    He, Y.
    Cazoulat, G.
    Oconnor, C.
    Odisio, B.
    Koay, E.
    Brock, K.
    MEDICAL PHYSICS, 2022, 49 (06) : E697 - E698
  • [3] Deep learning based auto-contouring of planning CT scans for rectal cancer
    Bokhorst, L.
    Savenije, M. H. F.
    Intven, M. P. W.
    Van den Berg, C. A. T.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S949 - S949
  • [4] Evaluation of a CT scanner based deep learning auto-contouring solution for lung radiotherapy
    Williams, M.
    Berenato, S.
    Moehler, C.
    Millin, A.
    Wheeler, P.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1317 - S1318
  • [5] Evaluation of a CT scanner based deep learning auto-contouring solution for prostate radiotherapy
    Williams, M.
    Berenato, S.
    Woodley, O.
    Moehler, C.
    Evans, E.
    Millin, A.
    Wheeler, P.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S263 - S264
  • [6] Automated Contouring of Contrast and Non-Contrast CT Liver Images with Fully Convolutional Neural Networks
    Anderson, B. M.
    Lin, E.
    Cardenas, C. E.
    Koay, E. J.
    Odisio, B.
    Brock, K. K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : S55 - S55
  • [7] Investigating intensity augmentation for deep learning contouring on prostate contrast-enhanced CT
    Balfour, D.
    Boukerroui, D.
    McQuinlan, Y.
    Baggs, R.
    Turner, J.
    Battye, M.
    Looney, P.
    van Elmpt, W.
    Dekker, A.
    Gooding, M.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S41 - S43
  • [8] Automated segmentation of colorectal liver metastasis and liver ablation on contrast-enhanced CT images
    Anderson, Brian M.
    Rigaud, Bastien
    Lin, Yuan-Mao
    Jones, A. Kyle
    Kang, HynSeon Christine
    Odisio, Bruno C.
    Brock, Kristy K.
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [9] Automatic Contouring QA Approach Using a Deep-Learning-Based Auto-Contouring System
    Rhee, D.
    Anakwenze, C.
    Rigaud, B.
    Jhingran, A.
    Cardenas, C.
    Zhang, L.
    Prajapati, S.
    Kry, S.
    Brock, K.
    Beadle, B.
    Shaw, W.
    O'reilly, D.
    Parkes, J.
    Burger, H.
    Fakie, N.
    Trauernicht, C.
    Simonds, H.
    Court, L.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [10] Clinical Evaluation of Deep Learning Based Auto-Contouring Software for Prostate Radiotherapy
    Kirk, M.
    Anderson, B.
    Prichard, H.
    Ryan, L.
    Zhang, X.
    Wang, Y.
    MEDICAL PHYSICS, 2021, 48 (06)