Open subgroups of locally compact Kac–Moody groups

被引:0
|
作者
Pierre-Emmanuel Caprace
Timothée Marquis
机构
[1] UCL,
来源
Mathematische Zeitschrift | 2013年 / 274卷
关键词
Compact Group; Parabolic Subgroup; Coxeter Group; Finite Index; Open Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} be a complete Kac–Moody group over a finite field. It is known that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} possesses a BN-pair structure, all of whose parabolic subgroups are open in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. We show that, conversely, every open subgroup of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is contained with finite index in some parabolic subgroup; moreover there are only finitely many such parabolic subgroups. The proof uses some new results on parabolic closures in Coxeter groups. In particular, we give conditions ensuring that the parabolic closure of the product of two elements in a Coxeter group contains the respective parabolic closures of those elements.
引用
收藏
页码:291 / 313
页数:22
相关论文
共 50 条
  • [1] Open subgroups of locally compact Kac-Moody groups
    Caprace, Pierre-Emmanuel
    Marquis, Timothee
    MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (1-2) : 291 - 313
  • [2] Locally normal subgroups and ends of locally compact Kac-Moody groups
    Caprace, Pierre -Emmanuel
    Marquis, Timothee
    Reid, Colin D.
    MUENSTER JOURNAL OF MATHEMATICS, 2022, 15 (02): : 473 - 498
  • [3] Abstract simplicity of locally compact Kac-Moody groups
    Marquis, Timothee
    COMPOSITIO MATHEMATICA, 2014, 150 (04) : 713 - 728
  • [4] p-compact groups as subgroups of maximal rank of Kac-Moody groups
    Aguade, Jaume
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2009, 49 (01): : 83 - 112
  • [5] Locally Compact Groups with Compact Open Subgroups Having Open Chabauty Spaces
    Hamrouni, Hatem
    Jlali, Zouhour
    JOURNAL OF LIE THEORY, 2020, 30 (01) : 1 - 8
  • [6] Open quantum subgroups of locally compact quantum groups
    Kalantar, Mehrdad
    Kasprzak, Pawel
    Skalski, Adam
    ADVANCES IN MATHEMATICS, 2016, 303 : 322 - 359
  • [7] COMPACTLY GENERATED SUBGROUPS AND OPEN SUBGROUPS OF LOCALLY COMPACT-GROUPS
    BAGLEY, RW
    WU, TS
    YANG, JS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) : 969 - 976
  • [8] Spin covers of maximal compact subgroups of Kac-Moody groups and spin-extended Weyl groups
    Ghatei, David
    Horn, Max
    Koehl, Ralf
    Weiss, Sebastian
    JOURNAL OF GROUP THEORY, 2017, 20 (03) : 401 - 504
  • [9] Strong Integrality of Inversion Subgroups of Kac-Moody Groups
    Ali, Abid
    Carbone, Lisa
    Liu, Dongwen
    Murray, Scott H.
    JOURNAL OF LIE THEORY, 2024, 34 (02) : 453 - 468
  • [10] SUBGROUPS OF LOCALLY COMPACT GROUPS
    MONTGOMERY, D
    AMERICAN JOURNAL OF MATHEMATICS, 1948, 70 (02) : 327 - 332