Locally normal subgroups and ends of locally compact Kac-Moody groups

被引:1
|
作者
Caprace, Pierre -Emmanuel [1 ]
Marquis, Timothee [1 ]
Reid, Colin D. [2 ]
机构
[1] UCLouvain, IRMP, Chemin Cyclotron 2, B-1348 Louvain La Neuve, Belgium
[2] Univ Newcastle, Sch Informat & Phys Sci, Callaghan, NSW 2308, Australia
来源
MUENSTER JOURNAL OF MATHEMATICS | 2022年 / 15卷 / 02期
关键词
CONJUGACY; BUILDINGS;
D O I
10.17879/21089688074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A locally normal subgroup in a topological group is a subgroup whose normalizer is open. In this paper, we provide a detailed description of the large-scale structure of closed locally normal subgroups of complete Kac-Moody groups over finite fields. Combining that description with the main result from [7], we show that, under mild assumptions, if the Kac- Moody group is one-ended (a property that is easily determined from the generalized Cartan matrix), then it is locally indecomposable, which means that no open subgroup decomposes as a nontrivial direct product.
引用
收藏
页码:473 / 498
页数:26
相关论文
共 50 条
  • [1] Open subgroups of locally compact Kac-Moody groups
    Caprace, Pierre-Emmanuel
    Marquis, Timothee
    MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (1-2) : 291 - 313
  • [2] Open subgroups of locally compact Kac–Moody groups
    Pierre-Emmanuel Caprace
    Timothée Marquis
    Mathematische Zeitschrift, 2013, 274 : 291 - 313
  • [3] Abstract simplicity of locally compact Kac-Moody groups
    Marquis, Timothee
    COMPOSITIO MATHEMATICA, 2014, 150 (04) : 713 - 728
  • [4] p-compact groups as subgroups of maximal rank of Kac-Moody groups
    Aguade, Jaume
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2009, 49 (01): : 83 - 112
  • [5] Locally normal subgroups of simple locally compact groups
    Caprace, Pierre-Emmanuel
    Reid, Colin D.
    Willis, George A.
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (17-18) : 657 - 661
  • [6] NORMAL SUBGROUPS OF LOCALLY COMPACT GROUPS
    KABENYUK, MI
    SIBERIAN MATHEMATICAL JOURNAL, 1975, 16 (05) : 767 - 771
  • [7] Strong Integrality of Inversion Subgroups of Kac-Moody Groups
    Ali, Abid
    Carbone, Lisa
    Liu, Dongwen
    Murray, Scott H.
    JOURNAL OF LIE THEORY, 2024, 34 (02) : 453 - 468
  • [8] Infinite-dimensional algebraic subgroups of Kac-Moody groups
    Huang, Linwen
    Zha, Jianguo
    Tongji Daxue Xuebao/Journal of Tongji University, 26 (01): : 9 - 13
  • [9] Isomorphisms of Kac-Moody groups which preserve bounded subgroups
    Caprace, Pierre-Emmanuel
    Muhlherr, Bernhard
    ADVANCES IN MATHEMATICS, 2006, 206 (01) : 250 - 278
  • [10] Spin covers of maximal compact subgroups of Kac-Moody groups and spin-extended Weyl groups
    Ghatei, David
    Horn, Max
    Koehl, Ralf
    Weiss, Sebastian
    JOURNAL OF GROUP THEORY, 2017, 20 (03) : 401 - 504