Open subgroups of locally compact Kac–Moody groups

被引:0
|
作者
Pierre-Emmanuel Caprace
Timothée Marquis
机构
[1] UCL,
来源
Mathematische Zeitschrift | 2013年 / 274卷
关键词
Compact Group; Parabolic Subgroup; Coxeter Group; Finite Index; Open Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} be a complete Kac–Moody group over a finite field. It is known that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} possesses a BN-pair structure, all of whose parabolic subgroups are open in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document}. We show that, conversely, every open subgroup of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is contained with finite index in some parabolic subgroup; moreover there are only finitely many such parabolic subgroups. The proof uses some new results on parabolic closures in Coxeter groups. In particular, we give conditions ensuring that the parabolic closure of the product of two elements in a Coxeter group contains the respective parabolic closures of those elements.
引用
收藏
页码:291 / 313
页数:22
相关论文
共 50 条
  • [41] Buildings and Kac-Moody Groups
    Remy, Bertrand
    BUILDINGS, FINITE GEOMETRIES AND GROUPS, 2012, 10 : 231 - 250
  • [42] Isomorphisms of Kac-Moody groups
    Caprace, PE
    Mühlherr, B
    INVENTIONES MATHEMATICAE, 2005, 161 (02) : 361 - 388
  • [43] LOCALLY COMPACT-GROUPS - MAXIMAL COMPACT SUBGROUPS AND N-GROUPS
    BAGLEY, RW
    WU, TS
    YANG, JS
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 104 : 47 - 64
  • [44] Kac-Moody groups and completions
    Capdeboscq, Inna
    Rumynin, Dmitriy
    JOURNAL OF ALGEBRA, 2020, 561 : 131 - 148
  • [45] CONGRUENCE SUBGROUPS OF LATTICES IN RANK 2 KAC-MOODY GROUPS OVER FINITE FIELDS
    Ali, Abid
    Carbone, Lisa
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (03) : 1236 - 1264
  • [46] Contraction groups in complete Kac-Moody groups
    Baumgartner, Udo
    Ramagge, Jacqui
    Remy, Bertrand
    GROUPS GEOMETRY AND DYNAMICS, 2008, 2 (03) : 337 - 352
  • [47] Open mappings of locally compact groups
    Cowling, Michael G.
    Hofmann, Karl H.
    Morris, Sidney A.
    JOURNAL OF GROUP THEORY, 2024, 27 (06) : 1143 - 1149
  • [48] COMPACTIFICATIONS OF LOCALLY COMPACT-GROUPS AND CLOSED SUBGROUPS
    LAU, AT
    MILNES, P
    PYM, JS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (01) : 97 - 115
  • [49] DENSE PURE SUBGROUPS OF LOCALLY COMPACT-GROUPS
    KABENYUK, MI
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (02) : 537 - 539
  • [50] Locally compact groups with all dense subgroups separable
    Peng, Dekui
    FORUM MATHEMATICUM, 2025,