Compact Group;
Parabolic Subgroup;
Coxeter Group;
Finite Index;
Open Subgroup;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document} be a complete Kac–Moody group over a finite field. It is known that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document} possesses a BN-pair structure, all of whose parabolic subgroups are open in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document}. We show that, conversely, every open subgroup of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document} is contained with finite index in some parabolic subgroup; moreover there are only finitely many such parabolic subgroups. The proof uses some new results on parabolic closures in Coxeter groups. In particular, we give conditions ensuring that the parabolic closure of the product of two elements in a Coxeter group contains the respective parabolic closures of those elements.