Belavin Elliptic R-Matrices and Exchange Algebras

被引:0
|
作者
A. V. Odesskii
机构
[1] Russian Academy of Sciences,L. D. Landau Institute of Theoretical Physics
关键词
Functional Analysis; Commutation Relation; Exchange Relation; Baxter Equation; Exchange Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We study Zamolodchikov algebras whose commutation relations are described by Belavin matrices defining a solution of the Yang–Baxter equation (Belavin \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R$$ \end{document}-matrices). Homomorphisms of Zamolodchikov algebras into dynamical algebras with exchange relations and also of algebras with exchange relations into Zamolodchikov algebras are constructed. It turns out that the structure of these algebras with exchange relations depends substantially on the primitive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n$$ \end{document}th root of unity entering the definition of Belavin \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R$$ \end{document}-matrices.
引用
收藏
页码:49 / 61
页数:12
相关论文
共 50 条